

GLOBAL LIVESTOCK ENVIRONMENTAL ASSESSMENT MODEL

Version 2.0

Data reference year: 2010

Model description

GLOBAL LIVESTOCK ENVIRONMENTAL ASSESSMENT MODEL

Model Description
Version 2.0

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.

The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.

© FAO, 2017

FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO's endorsement of users' views, products or services is not implied in any way.

All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact-us/licence-request or addressed to copyright@fao.org.

FAO information products are available on the FAO website (<u>www.fao.org/publications</u>) and can be purchased through <u>publications-sales@fao.org</u>.

Contents

LIST OF TABLES	i
LIST OF FIGURES	iii
ABBREVIATIONS	iv
ACKNOWLEDGEMENTS	v
CHAPTER 1 – INTRODUCTION	1
1.1 – MODEL OVERVIEW	1
1.2 –GLEAM AND THE LCA FRAMEWORK	1
1.3 – SOURCES OF EMISSIONS	4
1.4 – DATA RESOLUTION	5
1.5 – LIVESTOCK DISTRIBUTION AND PRODUCTION SYSTEMS	5
CHAPTER 2 – HERD MODULE	9
2.1 – HERD MODULE: LARGE RUMINANTS	12
2.2 – HERD MODULE: SMALL RUMINANTS	17
2.3 – HERD MODULE: PIGS	21
2.4 – HERD MODULE: CHICKEN	24
CHAPTER 3 – FEED RATION AND INTAKE MODULE	31
3.1 – CROP YIELDS AND PASTURE PRODUCTIVITY	31
3.2 –RUMINANTS' FEED RATIONS	32
3.3 –MONOGASTRICS' FEED RATION	44
3.4 – NUTRITIONAL VALUES	52
3.5 – ENERGY REQUIREMENTS	53
3.6 – FEED INTAKE	64
CHAPTER 4 – ANIMAL EMISSIONS MODULE	65
4.1 – MANURE MANAGEMENT SYSTEMS	65
4.2 – METHANE EMISSIONS FROM ENTERIC FERMENTATION	67
4.3 – METHANE EMISSIONS FROM MANURE MANAGEMENT	67
4.4 – NITROUS OXIDE EMISSIONS FROM MANURE MANAGEMENT	69
4.5 – TOTALIZING EMISSIONS AT HERD OR FLOCK LEVEL	73
CHAPTER 5 – MANURE MODULE	74
5.1 – NITROGEN EXCRETION RATES	74
5.2 – NITROGEN LOSSES FROM MANAGEMENT	74
5.2 – APPLICATION RATES TO ARABLE AND PASTURE LAND	75
CHAPTER 6 – FEED EMISSIONS MODULE	76
6.1 – CO2 EMISSIONS	78
6.2 – NITROUS OXIDE EMISSIONS	82
6.3 – METHANE EMISSIONS FROM RICE USED FOR FEED	84

6.4 – GHG EMISSIONS ARISING FROM THE PRODUCTION OF NON-CROP FEED MATERIALS	84
6.5 – ALLOCATION OF EMISSIONS BETWEEN CROP AND CROP CO-PRODUCTS	85
6.6 – EMISSIONS FROM FEED CONSUMPTION	90
6.7 – TOTALIZING EMISSIONS AT HERD OR FLOCK LEVEL	91
CHAPTER 7 – EMISSIONS FROM ENERGY USE	92
7.1 – EMISSIONS FROM CAPITAL GOODS – INDIRECT ENERGY USE	92
7.2 – EMISSIONS RELATED TO ON-FARM ENERGY USE – DIRECT ENERGY USE	92
CHAPTER 8 – POST-FARM EMISSIONS	93
8.1 – EMISISONS FROM TRANSPORT	93
8.2 – PROCESSING AND PACKAGING	94
8.3 – TOTAL POST-FARM EMISSION FACTORS	95
CHAPTER 9 – ALLOCATION MODULE	96
9.1 – TOTAL LIVESTOCK PRODUCTION	99
9.2 – AGGREGATION OF TOTAL EMISSIONS	100
9.3 – ALLOCATION OF EMISSIONS AND EMISSION INTENSITIES	102
REFERENCES	105
APPENDIX A – COUNTRY LIST	107

LIST OF TABLES

Table 1.1. Emission sources covered in GLEAM	4
Table 1.2. Spatial resolution of the main GLEAM input variables	5
Table 1.3. Characteristics of livestock production systems for ruminant species used in GLEAM	6
Table 1.4. Characteristics of livestock production systems for monogastric species used in GLEAM	6
Table 2.1. Summary of cohorts in GEAM	9
Table 2.2. Cattle and buffaloes input data and parameters	12
Table 2.3. Cattle and buffaloes output variables	13
Table 2.4. Herd parameters for dairy cattle, regional averages	Supplement S1
Table 2.5. Herd parameters for beef cattle, regional averages	Supplement S1
Table 2.6. Herd parameters for feedlot animals, regional averages	Supplement S1
Table 2.7. Herd parameters for buffaloes, regional averages	Supplement S1
Table 2.8. Sheep and goats input data and parameters	17
Table 2.9. Sheep and goats output variables	18
Table 2.10. Herd parameters for sheep, regional averages	Supplement S1
Table 2.11. Herd parameters for goats, regional averages	Supplement S1
Table 2.12. Pigs input data and parameters	21
Table 2.13. Pigs output variables	21
Table 2.14. Herd parameters for backyard pig production systems, regional averages	Supplement S1
Table 2.15. Herd parameters for intermediate pig production systems, regional averages	Supplement S1
Table 2.16. Herd parameters for industrial pig production systems, regional averages	Supplement S1
Table 2.17. Chicken input data and parameters	24
Table 2.18. Chicken output variables	25
Table 2.19. Herd parameters for backyard chicken production systems, regional averages	Supplement S1
Table 2.20. Herd parameters for layer chicken production systems, regional averages	Supplement S1
Table 2.21. Herd parameters for broiler chicken production systems, regional averages	Supplement S1
Table 3.1. List of crops, dry matter contents and parameters for the calculation of crop residues yield	Supplement S1
Table 3.2. List of feed materials for ruminant species	33
Table 3.3. Feeding groups for ruminant species	33
Table 3.4. Net yield equation, gross yields, FUE and MFA for each feed material for ruminant species	38
Table 3.5. Regional values of FUE for forages and crop residues of ruminant species	Supplement S1
Table 3.6. Partitioning of grass fraction	41
Table 3.7. Dairy cattle feed rations, regional averages	Supplement S1
Table 3.8. Beef cattle feed rations, regional averages	Supplement S1
Table 3.9. Feedlot rations, regional averages	Supplement S1
Table 3.10. Dairy buffaloes feed rations, regional averages	Supplement S1
Table 3.11. Non-dairy buffaloes feed rations, regional averages	Supplement S1
Table 3.12. Dairy small ruminant feed rations, regional averages	Supplement S1
Table 3.13. Non-dairy small ruminant feed rations, regional averages	Supplement S1
Table 3.14. List of feed materials for monogastrics	45
Table 3.15. Net yield equation, gross yields, FUE and MFA for each feed material for monogastric species	49
Table 3.16. Backyard pig production system feed ration, regional averages	Supplement S1
Table 3.17. Intermediate pig production system feed ration, regional averages	Supplement S1
Table 3.18. Industrial pig production system feed ration, regional averages	Supplement S1
Table 3.19. Backyard chicken production system feed ration, regional averages	Supplement S1
Table 3.20. Layer chicken production system feed ration, regional averages	Supplement S1
Table 3.21. Broiler chicken production system feed ration, regional averages	Supplement S1
Table 3.22. Nutritional values for feed materials of ruminant species	Supplement S1
Table 3.23. Nutritional values for feed materials of monogastric species	Supplement S1
Table 4.1. Manure management systems definitions	65

Table 4.2. Dairy cattle manure management systems, regional averages	Supplement S1
Table 4.3. Beef cattle manure management systems, regional averages	Supplement S1
Table 4.4. Feedlot cattle manure management systems, regional averages	Supplement S1
Table 4.5. Dairy buffalo manure management systems, regional averages	Supplement S1
Table 4.6. Non-dairy buffalo manure management systems, regional averages	Supplement S1
Table 4.7. Small ruminants manure management systems, regional averages	Supplement S1
Table 4.8. Backyard pigs manure management systems, regional averages	Supplement S1
Table 4.9. Intermediate pigs manure management systems, regional averages	Supplement S1
Table 4.10. Industrial pigs manure management systems, regional averages	Supplement S1
Table 4.11. Chickens manure management systems, regional averages	Supplement S1
Table 4.12. Methane conversion factors for different species and cohorts	67
Table 4.13. Methane conversion factors for manure management systems	68
Table 4.14. Nitrogen retention formulas for species and cohorts	69
Table 4.15. Emission factor for direct emissions for different manure management systems	71
Table 4.16. Values for nitrogen losses due to volatilization of NH3 and NOx from manure management	72
Table 4.17. Values for nitrogen losses due to leaching and runoff from manure management (%)	72
Table 6.1. Emission factors of field operations for feed materials of ruminant species	Supplement S1
Table 6.2. Emission factors of field operations for feed materials of monogastric species	Supplement S1
Table 6.3. Mechanization levels for feed materials of ruminant species	Supplement S1
Table 6.4. Mechanization levels for feed materials of monogastric species	Supplement S1
Table 6.5. Emission factors of processing and transport for feed materials of ruminant species	Supplement S1
Table 6.6. Emission factors of processing and transport for feed materials of monogastric species	Supplement S1
Table 6.7. Emission factors of land-use change associated with the cultivation of soybeans	Supplement S1
Table 6.8. Emission factors of land-use change associated with the cultivation of palm	Supplement S1
Table 6.8. Emission factors of land-use change associated with the cultivation of palm	Supplement S1
Table 6.9. Net changes in area for main land-use categories (1990-2010)	81
Table 6.10. Pasture expansion against forestland in Latin America (1900-2010)	81
Table 6.11. Soil organic carbon pool at 0-30 cm depth	82
Table 6.12. Parameters for nitrogen from crop residues for feed materials of ruminant species	Supplement S1
Table 6.13. Parameters for nitrogen from crop residues for feed materials of monogastric species	Supplement S1
Table 6.14. Exceptions to the default value for FracReMove	Supplement S1
Table 6.15. Parameters for allocation of emissions to feed materials of ruminant species	88
Table 6.16. Parameters for allocation of emissions to feed materials of monogastric species	89
Table 7.1. Average emissions factors for embedded energy use for dairy cattle (kg CO ₂ -eq·kg LW ⁻¹)	Supplement S1
Table 7.2. Average emissions factors for embedded energy use for small ruminants (kg CO ₂ -eq·kg LW ⁻¹)	Supplement S1
Table 7.3. Average emissions factors for embedded energy use for pigs (kg CO ₂ -eq·kg LW ⁻¹)	Supplement S1
Table 7.4. Average emissions factors for embedded energy use for chicken	Supplement S1
Table 7.5. Average emissions factors for direct energy use for dairy cattle and dairy buffalo (kg CO ₂ -eq·kg	LW ⁻¹)
	Supplement S1
Table 7.6. Average emissions factors for direct energy use for non-dairy herds of ruminants (kg CO ₂ -eq·kg	LW ⁻¹)
	Supplement S1
Table 8.1. Average regional CO2 emissions per MJ from electricity and heat generation	Supplement S1
Table 8.2. Energy consumption related to processing and packaging, MJ·kg product ⁻¹	Supplement S1
Table 9.1. Bone-free-meat to carcass weight ratio and protein content	99
Table 9.2. Dressing percentages	Supplement S1
Table 9.3. Example of allocation between products from cattle dairy production	103
Table 9.4. Example of allocation between products from sheep dairy production	103
Table 9.5. Example of allocation of emissions from rearing and finishing phases to feedlot systems	104
Table 9.6. Example of allocation between edible products for chicken	104

LIST OF FIGURES

Figure 1.1. Overview of GLEAM structure	2
Figure 1.2. System boundary used in GLEAM	3
Figure 2.1. Schematic representation of the herd dynamics for ruminants	10
Figure 2.2. Schematic representation of the herd dynamics for pigs and broiler chickens	10
Figure 2.3. Schematic representation of the herd dynamics for backyard and layer chickens	11
Figure 3.1. Representation of a hypothetical example of feed ration estimation for ruminant species in industrialize	:d
countries	34
Figure 3.2. Representation of a hypothetical example of feed ration estimation for cattle in developing countries	35
Figure 3.3. Representation of a hypothetical example of feed ration estimation for buffaloes and small ruminants in	1
developing countries	36
Figure 3.4. Representation of a hypothetical example of feed ration estimation for pigs	46
Figure 3.5. Representation of a hypothetical example of feed ration estimation for chickens	47
Figure 3.6. Schematic representation of the energy requirement and feed intake for ruminants	53
Figure 3.7. Schematic representation of the energy requirement and feed intake for monogastrics	54
Figure 4.1. Schematic representation of the animal emissions module	66
Figure 5.1. Schematic representation of the manure module	74
Figure 6.1. Schematic representation of the feed emissions module	77
Figure 6.2. Schematic representation of the calculation of the average emission factors for land-use change associa	ted
with the production and import of soybean products and palm kernel cake in a given country.	80
Figure 9.1. Schematic representation of the allocation module for ruminant species	97
Figure 9.2. Schematic representation of the allocation module for monogastric species	98

ABBREVIATIONS

CH₄ Methane

CO₂ Carbon dioxide

CO₂-eq Carbon dioxide equivalents

DM Dry Matter

EE Eastern Europe

EFA Economic Fraction Allocation

ESEA East Asia and South-East Asia

FUE Feed Use Efficiency

GAEZ Global Agro-Ecological Zones

GHG Greenhouse gas

Geographic Information System

GLEAM Global Livestock Environmental Assessment Model

GLW Gridded Livestock of the World

IPCC Intergovernmental Panel on Climate Change

LAC Latin America and the Caribbean

LCA Life-Cycle Assessment

LUC Land-use change

MFA Mass Fraction Allocation

MMS Manure management system

N₂O Nitrous oxide

NA North America

NENA Near East and North Africa

OCE Oceania

OECD Organization for Economic Cooperation and Development

RUS Russian Federation

SA South Asia

SSA Sub-Saharan Africa

VS Volatile solids

WE Western Europe

ACKNOWLEDGEMENTS

The Global Livestock Environmental Assessment Model (GLEAM) is being developed in FAO since 2009, in collaboration with partners from other organizations.

The GLEAM development and analysis team is composed of Anne Mottet, Carolyn Opio, Alessandra Falcucci, Giuseppe Tempio, Rubén Martínez Rodríguez, Giuseppina Cinardi, Monica Rulli, Félix Teillard and Aimable Uwizeye.

Former versions of GLEAM and applications were supported by Pierre Gerber, Henning Steinfeld, Benjamin Henderson, Jeroen Dijkman, Michael MacLeod, Theun Vellinga and Harinder Makkar. Significant inputs were received from Giulia Conchedda, Laura D'Aietti, Klaas Dietze, Guya Gianni, Marius Gilbert, Tim Robinson, Mirella Salvatore, Olaf Thieme and Viola Weiler.

CHAPTER 1 – INTRODUCTION

The Global Livestock Environmental Assessment Model (GLEAM) was developed to address the need for a comprehensive tool to assess interactions between livestock and the environment. GLEAM supports stakeholders in their efforts towards adopting more sustainable practices that ensure higher efficiency, improved livelihoods for farmers and mitigation of environmental impacts.

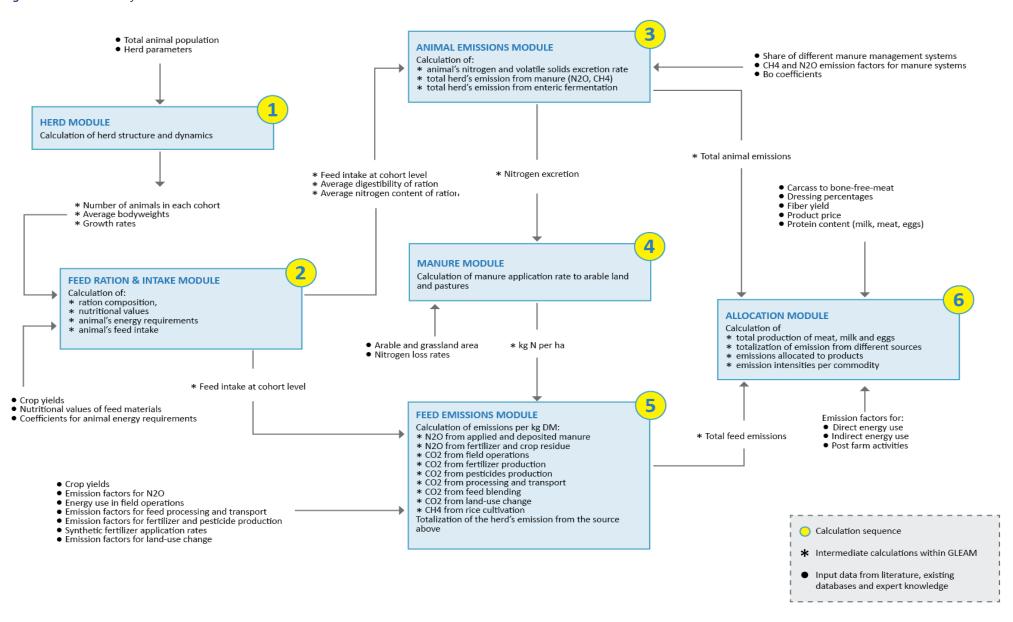
The present document describes the latest version of the model, GLEAM 2.0. It includes a number of improvements, updates and methodological changes compared to the previous version (GLEAM 1.0, described in FAO, 2013a and FAO, 2013b):

- New animal **distribution maps**. GLEAM 2.0 uses Version 2 of the Gridded Livestock of the World (GLW; Robinson *et al.*, 2014), which is adjusted to 2010 animal numbers from FAOSTAT.
- New production system: with the inclusion of cattle **feedlots**, GLEAM 2.0 accounts for the particularity in feeding and animal management specific to this system.
- New crop layers: GLEAM 2.0 incorporates a modified version of the Global Agro-Ecological Zones (GAEZ) maps (FAO, 2016) for crops used as feed, standardized to FAOSTAT data for 2010 and at a spatial resolution of approximately 10 km x 10 km at the equator.
- Inclusion of production and transport of **phosphorus** and **potassium fertilizers**, and production, transport and application of **pesticides** for the estimation of emissions related to feed production.
- Updated methodology to calculate the emissions associated with land-use change related to soy and palm kernel cakes.

1.1 – MODEL OVERVIEW

GLEAM is a process-based model based on a Life Cycle Assessment (LCA) framework. It covers 11 main livestock commodities at global scale, namely meat and milk from cattle, sheep, goats and buffalo; meat from pigs; and meat and eggs from chickens. The model runs in a Geographic Information System (GIS) environment and provides spatially disaggregated estimates on greenhouse gas (GHG) emissions and commodity production by production system, thereby enabling the calculation of the emission intensity for any combination of commodity and farming systems at different spatial scales. The highest spatial resolution considered by the model is defined by squared cells of approximately 10 km x 10 km at the equator. Each cell represents a portion of the earth and has an attribute value associated with it, such as crop yields or animal numbers, being the smallest unit of information in the GIS environment.

GLEAM is built on six modules reproducing main steps of livestock supply chain: the herd module, the feed ration and intake module, the animal emissions module, the manure module, the feed emissions module and the allocation module. The overall structure is shown in Figure 1.1. The figure is also a representation of the calculation sequence. Each module is explained in detail in its corresponding chapter.

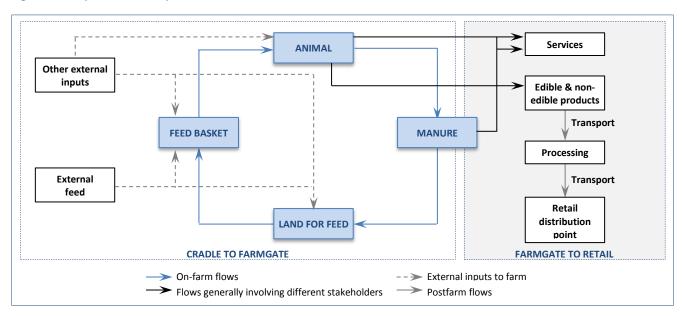

1.2 -GLEAM AND THE LCA FRAMEWORK

The LCA framework is defined in ISO standards 14040 and 14044 (ISO, 2006a and ISO, 2006b). It is a method widely accepted in agriculture and other industries to evaluate the environmental impact of products. It is also used to estimate the resource use and identify hotspots of environmental impact within a product's life cycle. The main strength of LCA lies in its ability to provide a holistic assessment of production processes in terms of resource use, pressures, and environmental impacts (ISO, 2006a and ISO, 2006b). LCA also provides a framework to broadly identify effective approaches to reduce environmental burdens and is recognized for its capacity to evaluate the effect of a change within a production process on the overall life-cycle balance of environmental burdens. This approach enables the identification and exclusion of measures that simply shift environmental problems from one phase of the life cycle to another.

1.2.1 – Functional unit

The functional units used to report GHG emissions in GLEAM are expressed as "kg of carbon dioxide equivalents (CO₂-eq) per kg of protein in animal product". This choice allows the comparison between different livestock products.

Figure 1.1 – Overview of GLEAM structure.



1.2.2 – System boundary

GLEAM covers the entire livestock production chain, from feed production to the retail point (Figure 1.2). The system boundary is defined from "Cradle-to-retail of processed animal products." All emissions occurring at the final consumption are outside the defined system boundary, and are thus excluded from this assessment. Livestock supply chains are complex, with a number of interacting unit processes that include crop and pasture production, manure management systems, feed processing and transport, animal breeding and management, etc. The LCA approach models the flow of all products through processes onfarm but also off-farm such as feed imports and exports of animal products or live-animals. The model also covers other external inputs such as energy, fertilizers, pesticides and machinery use.

These connections require the development of specific modules and attribution techniques for the allocation of emissions to different processes and co-products. The processes not only represent different activities in the supply chains, but also define the inter-linkages among production processes such as the link between animal performance, animal feed requirements (energy and protein requirements) and production of outputs such as manure, edible and non-edible products, services and emissions.

Figure 1.2 – System boundary used in GLEAM.

1.3 – SOURCES OF EMISSIONS

GLEAM estimates emissions of the three major GHGs associated with livestock supply chains, namely methane (CH₄), nitrous oxide (N₂O) and carbon dioxide (CO₂). Table 1.1 shows the emission sources that are included in GLEAM.

TABLE 1.1. Emission sources covered in GLEAM

Source of emissions		Description	
Feed CO₂	field operations	CO ₂ emissions arising from the use of fossil fuels during field operations	
	fertilizer production	CO ₂ emissions from the manufacture and transport of synthetic nitrogenous,	
		phosphate and potash fertilizers	
	pesticide production	CO ₂ emissions from the manufacture, transport and application of pesticides	
	processing and	CO ₂ generated during the processing of crops for feed and the transport by land	
	transport	and/or sea	
	blending and pelleting	CO ₂ arising from the blending of concentrate feed	
Feed land-use	soybean cultivation	CO ₂ emission due to LUC associated with the expansion of soybean	
change CO₂	palm kernel cake	CO ₂ emission due to LUC associated with the expansion of palm oil plantations	
	pasture expansion	CO ₂ emission due to LUC associated with the expansion of pastures	
Feed N₂O	applied and deposited	Direct and indirect N ₂ O emissions from manure deposited on the fields and used as	
	manure	organic fertilizer	
	fertilizer and crop	Direct and indirect N₂O emissions from applied synthetic nitrogenous fertilizer and	
	residues	crop residues decomposition	
Feed CH ₄ Rice production CH ₄ emissions arising from the cultivation of rice used as feed			
Enteric fermentation	CH ₄	CH ₄ emissions caused by enteric fermentation	
Manure managemen	t CH₄	CH ₄ emissions arising from manure storage and management	
Manure managemen	t N₂O	N ₂ O emissions arising from manure storage and management	
Direct energy use CO ₂		CO₂ emissions arising from energy use on-farm for ventilation, heating, etc.	
Embedded energy use CO ₂		CO ₂ emissions arising from energy use during the construction of farm buildings and	
		equipment	
Postfarm CO₂		CO ₂ emissions from the processing and transport of livestock products	

1.4 - DATA RESOLUTION

Data availability, quality and resolution vary according to parameters and countries considered (Table 1.2). In OECD countries, where farming tends to be more regulated and monitored, there are often comprehensive national or regional datasets, and in some cases sub-national datasets (e.g. manure management in dairy systems in USA). Conversely, in non-OECD countries, data is often unavailable necessitating the use of regional default values (e.g. backyard pig and chicken herd parameters).

Basic input data such as animal numbers, herd parameters, mineral fertilizer application rates, temperature, etc. are taken from the literature and specific surveys. Intermediate calculations generate outputs and are used in subsequent calculations in GLEAM. They include data on growth rates, animal cohort (or groups), feed rations, animal energy requirements, etc.

TABLE 1.2. Spatial resolution of the main GLEAM input variables

Parameters	Cell ¹	Sub-national	National	Regional ²	Global
Herd					
Animal numbers	Х				
Live weights		Х	Х	Х	
Mortality, fertility and replacement data		Х	Х	Х	
Manure					
Nitrogen losses rates					Х
Management system data		Х	Х	Х	
Leaching rates				Х	
Feed	·	<u> </u>	<u> </u>	<u> </u>	
Crop yields	X				
Harvested area	Х				
N, P and K fertilizer application rate			Х		
Pesticides application rate			Х		
Mechanization level			Х		
Nitrogen crop residues	Х				
Feed ration			X ³	Х	
Digestibility and energy content of feedstuffs			Х	Х	Х
Nitrogen content of feedstuffs				Х	Х
Energy in field operations and transport					Х
Transport distances					Х
Land-use change	·	<u> </u>	<u> </u>	<u> </u>	
Soybean			Х		
Palm kernel cake			Х		
Pasture			Х		
Animal productivity	·	<u> </u>	<u> </u>	<u> </u>	
Yield (milk, eggs, fibers)			Х	Х	
Dressing percentage			Х	Х	
Fat and protein content			Х	Х	Х
Product farmgate prices ⁴			Х	Х	
Postfarm	·				
Transport distances of animals or products			Х		
Energy use			Х		
Annual average temperature	Х				
Direct and indirect energy		Х	Х	Х	

The spatial resolution varies geographically and depends on the data availability. For each input, the spatial resolution of a given area is defined at the finest level possible.

1.5 - LIVESTOCK DISTRIBUTION AND PRODUCTION SYSTEMS

1.5.1 – Animal populations and spatial distribution

National inventory for all major livestock species (cattle, buffaloes, sheep, goats, pigs and chickens) are based on FAOSTAT data for 2010. The geographic distribution is based on the Gridded Livestock of the World (GLW) model. Density maps from GLW are based on observed densities and explanatory variables such as climatic data, land cover and demographic parameters (Robinson *et al.*, 2014).

¹ Approximately 10 km x 10 km at the equator.

 $^{^{\}rm 2}$ Geographic regions or agro-ecological zones.

³ Ruminants: rations in industrialized countries; monogastrics: share of swill and non-locally produced materials.

⁴Only for allocation in small ruminants.

1.5.2 – Livestock production systems

GLEAM distinguishes between three production systems for cattle (grassland based, mixed farming systems and feedlots), two for buffaloes, sheep and goats (grassland based and mixed farming systems) (Table 1.3). For monogastric species, the model distinguishes three production systems for pigs (backyard, intermediate and industrial) and three for chicken (backyard, layers and broilers; the last two being industrial) (Table 1.4). Livestock production systems are further classified according to the agroecological zones as defined in Seré and Steinfeld (1996):

- **Temperate** includes temperate regions, where at least one or two months a year the temperature falls below 5°C; and tropical highlands, where the daily mean temperature in the growing season ranges from 5 to 20 °C.
- **Arid** includes arid and semi-arid tropics and subtropics, with a growing period of less than 75 days and 75-180 days, respectively.
- **Humid** includes humid tropics and sub-humid tropics where the length of the growing period ranges from 181-270 days or exceeds 271 days, respectively.

TABLE 1.3. Characteristics of livestock production systems for ruminant species used in GLEAM

Production system	Characteristics
Ruminant species	
Grassland based (or grazing) systems	Livestock production systems found in areas dominated by pastures and rangelands with short growing period (<60 days) or very low human density (<20 people per km²), in which more than 10% of the dry matter fed to animals is farm-produced and in which annual average stocking rates are less than 10 livestock units per hectare of agricultural land.
Mixed farming systems	Livestock production systems found in areas dominated by cropland or areas with growing period >60 days and human density >20 people per km ² , in which more than 10% of the dry matter fed to animals comes from crop by-products and/or stubble or more than 10% of the value of production comes from non-livestock farming activities.
Feedlots	Specialized, fully market-oriented operations where animals are fed with a specialized diet that is intended to stimulate weight gain. This period typically lasts for six to nine months, depending on the starting and targeted live weight. Diets are generally composed of highly energetic and protein-rich feedstuffs, such as corn and cakes, respectively. Although it can vary among different operations, animals are kept in fully enclosed areas to facilitate the fattening process.

Source: authors based on Seré and Steinfeld (1996) and Robinson et al. (2011).

TABLE 1.4. Characteristics of livestock production systems for monogastric species used in GLEAM

Production system	Characteristics	Housing
Pigs		
Backyard	Mainly subsistence driven or for local markets; level of capital inputs reduced to the minimum; herd performance lower than commercial systems; feed contains maximum 20% of purchased non-local feed; high shares of swill, scavenging and locally-sourced feeds.	Partially enclosed: no concrete floor, or if any pavement is present, made with local material. Roof and support made of local materials (e.g. mud bricks, thatch or timber).
Intermediate	Fully market-oriented; medium capital input requirements; reduced level of overall herd performance (compared with industrial); locally-sourced feed materials constitute 30 to 50% of the ration.	Partially enclosed: no walls (or made of a local material if present), solid concrete floor, steel roof and support.
Industrial	Fully market-oriented; high capital input requirements (including infrastructure, buildings, equipment); high level of overall herd performance; purchased non-local feed in diet or on-farm intensively produced feed.	Fully enclosed: slatted concrete floor, steel roof and support, brick, concrete, steel or wood walls.
Chicken		
Backyard	Animals producing meat and eggs for the owner and local market, living freely. Diet consists of swill and scavenging (20 to 40%) while locally-produced feed constitutes the rest.	Simple housing using local wood, bamboo, clay, leaf material and handmade construction resources for supports plus scarp wire netting walls and scrap iron for roof.
Layers	Fully market-oriented; high capital input requirements; high level of overall flock productivity; purchased non-local feed or on-farm intensively produced feed.	Layers housed in a variety of cage, barn and free-range systems, with automatic feed and water provision.
Broilers	Fully market-oriented; high capital input requirements; high level of overall flock productivity; purchased non-local feed or on-farm intensively produced feed.	Broilers assumed to be primarily loosely housed on litter, with automatic feed and water provision.

Source: authors based on Seré and Steinfeld (1996) and Robinson et al. (2011).

1.5.2.1 – Ruminant systems

The distinction between grazing and mixed systems was based on the methodology developed by Robinson et al. (2011), using the above mentioned predictors: population density, land cover and length of growing period.

The further classification of feedlot systems was based on the existence of such systems in the countries as reported in the literature and in national census. Input data were collected through literature reviews and expert opinion and, depending on the availability, at national or sub-national level. Sources of information include national statistics (USDA, 2012; EUROSTAT, 2010; MLA, 2011), literature research (Agribenchmark, 2013; Scholtz et al., 2008) and direct consultations with national experts.

The location of feedlots was based on the distribution maps from GLW, and aligned with national sources when they exist. For each country with feedlot presence, cells were ranked according to the animal density. Those with the highest density of cattle were classified as potential feedlot areas.

1.5.2.2 - Pigs

The distinction of production systems for pigs was performed using the methodology described in Gilbert *et al.* (2015). The authors developed a model based on national reported data on the share of 'backyard' pigs and data on gross domestic product (GDP) per capita (in purchase power parity for 2010; PPP₂₀₁₀). This model was then used to estimate the proportion of backyard pigs in countries where this proportion was unavailable. Finally, the estimated numbers of backyard animals were spatially distributed according to the distribution of the human rural population, with areas of high rural population corresponding to higher density of backyard pigs. The distinction between 'intermediate' and 'industrial' systems was done on the basis of reported data supplemented by expert opinion.

1.5.2.3 – *Chickens*

The same procedure based on Gilbert *et al.* (2015) was followed for chicken to distinguish between 'backyard' and 'industrial' systems. Animals in the industrial systems were further sub-divided into layers and broilers, in three steps combining production data of meat and eggs from FAOSTAT and productivity figures from GLEAM (Box 1). Then, adjustments to the resulting fractions were done so that the proportions of meat and egg protein production in GLEAM correspond as close as possible to those reported by FAOSTAT.

BOX 1 - DISAGGREGATION OF INDUSTRIAL CHICKEN INTO LAYERS AND BROILER SYSTEMS

The procedure to disaggregate industrial systems (CHK_{IND}) into layers (CHK_{LYR}) and broilers (CHK_{BRL}) was done in three steps:

STEP 1. Average yields for eggs and meat were calculated for all chicken in each country, using the backyard and industrial yields calculated from GLEAM parameters and weighting the averages by the shares of backyard and industrial animals from Gilbert et al (2015).

```
\overline{EGG}yield = (CHK_{BCK} * EGGyield_{BCK} + CHK_{IND} * EGGyield_{LYR})
\overline{MEAT}yield = (CHK_{BCK} * MEATyield_{BCK} + CHK_{IND} * MEATyield_{BRL})
```

Where:

 \overline{EGG} yield = flock's weighted average egg yield, kg eggs·head $^{-1}$ \overline{MEAT} yield = flock's weighted average meat yield, kg CW·head $^{-1}$

 CHK_{BCK} = share of backyard systems taken from Gilbert *et al.*, fraction CHK_{IND} = share of industrial systems taken from Gilbert *et al.*, fraction

 $EGGyield_{BCK} =$ egg yield for backyard animals calculated from GLEAM parameters, kg eggs·head-1 $EGGyield_{LYR} =$ egg yield for layer animals calculated from GLEAM parameters, kg eggs·hen-1 $MEATyield_{BCK} =$ meat yield for backyard animals calculated from GLEAM parameters, kg CW·head-1 $MEATyield_{BRL} =$ meat yield for broiler animals calculated from GLEAM parameters, kg CW·head-1

STEP 2. The average yields were combined with production data from FAOSTAT to calculate the share of animals producing meat in the total flock.

$$MEAT_{share} = \frac{FAOSTAT_{meat}/\overline{MEAT}yield}{(FAOSTAT_{meat}/\overline{MEAT}yield) + (FAOSTAT_{eggs}/\overline{EGG}yield)}$$

Where

 $\begin{array}{lll} \textit{MEAT}_{share} & = & \text{share of animals producing meat in the flock, fraction} \\ \hline \textit{FAOSTAT}_{meat} & = & \text{chicken meat production from FAOSTAT, kg CW} \\ \hline \textit{MEAT} \textit{yield} & = & \text{flock's weighted average meat yield, kg CW-head}^{-1} \\ \hline \textit{FAOSTAT}_{eggs} & = & \text{eggs production from FASOTAT, kg eggs} \\ \end{array}$

 \overline{EGG} yield = flock's weighted average egg yield, kg eggs·head-1

STEP 3. The share of meat producing animals was applied to the industrial animals to estimate the number of "broilers", while the share of "layers" was calculated as the difference.

 $CHK_{BRL} = CHK_{IND} * MEAT_{share}$ $CHK_{LYR} = CHK_{IND} - CHK_{BRL}$

Where:

 CHK_{BRL} = share of broiler animals in the flock, fraction

 CHK_{IND} = share of industrial systems taken from Gilbert et~al., fraction $MEAT_{share}$ = share of animals producing meat in the flock, fraction

 CHK_{LYR} = share of layer animals in the flock, fraction

CHAPTER 2 – HERD MODULE

The first step towards the estimation of production and impacts of livestock supply chains is the characterization of animal populations, which is the function of the herd module.

In particular, the use of the IPCC (2006) Tier 2 methodology requires animal populations to be categorized into distinct cohorts based on animal type, weight, phase of production and feeding situation. This characterization supports the calculation of country-specific age structure, animal performance, feed intake and related emissions. Table 2.1 summarizes the cohorts used in GLEAM, their definition and the sections of the model description where they are calculated. For the schematic representation of the herd dynamics, see Figures 2.1 to 2.3.

TABLE 2.1. Summary of cohorts in GLEAM

Cohort	Description	Section
CATTLE		2.1.2
AF	Adult females, producing milk and calves	
RF	Replacement females, to replace culled and dead adult females	
AM	Adult males, used for reproduction and draught power	
RM	Replacement males, to replace culled and dead adult males	
MF	Meat female animals not fattened in feedlots	
MM	Meat male animals not fattened in feedlots	
MFf	Meat females, surplus animals fattened for meat production in feedlots	
MMf	Meat males, surplus animals fattened for meat production in feedlots	
BUFFALOES, SHE	EP, GOATS	2.1.2, 2.2.2, 2.2.2
AF	Adult females, producing milk and calves/lambs/kids	
RF	Replacement females, to replace culled and dead adult females	
AM	Adult males, used for reproduction and draught power (buffaloes only)	
RM	Replacement males, to replace culled and dead adult males	
MF	Meat female animals	
MM	Meat male animals	
Pigs		2.3.2
AF	Adult females, producing piglets	
RF	Replacement females, to replace culled and dead adult females	
AM	Adult males, used for reproduction	
RM	Replacement males, to replace culled and dead adult males	
M2	Meat animals, female and male fattening animals for meat production	
	ivieat animais, remaie and maie fattening animais for meat production	
CHICKEN		2.4.2
BACKYARD SYSTEM		2.4.2
AF	Adult females, used for reproduction	
AM	Adult males, used for reproduction	
RF	Replacement females, to replace culled and dead adult females	
RM	Replacement males, to replace culled and dead adult males	
MF1, MF2	Growing and adult surplus females	
MM	Surplus males, sold for meat	
LAYERS		2.4.3
AF	Adult females, used for reproduction	
AM	Adult males, used for reproduction	
RF	Replacement females, to replace culled and dead adult females	
RM	Replacement males, to replace culled and dead adult males	
MF1	Growing laying females	
MF2	Adult laying females during the first laying period	
MF3	Adult laying females during the molting period	
MF4	Adult laying females during the second laying period	
ММ	Surplus males, sold for meat	
BROILERS		2.4.4
AF	Adult females, used for reproduction	
AM	Adult males, used for reproduction	
RF	Replacement females, to replace culled and dead adult females	
RM	Replacement males, to replace culled and dead adult males	
M2	Adult female and male broiler animals	

Figure 2.1 – Schematic representation of the herd dynamics for ruminants

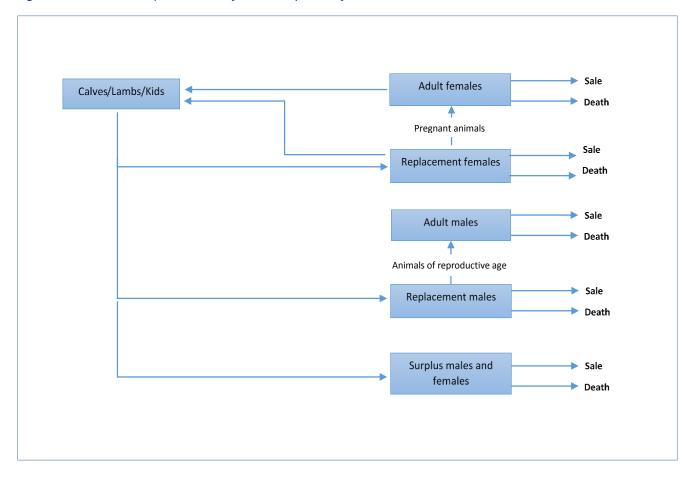


Figure 2.2 – Schematic representation of the herd dynamics for pigs and broiler chickens

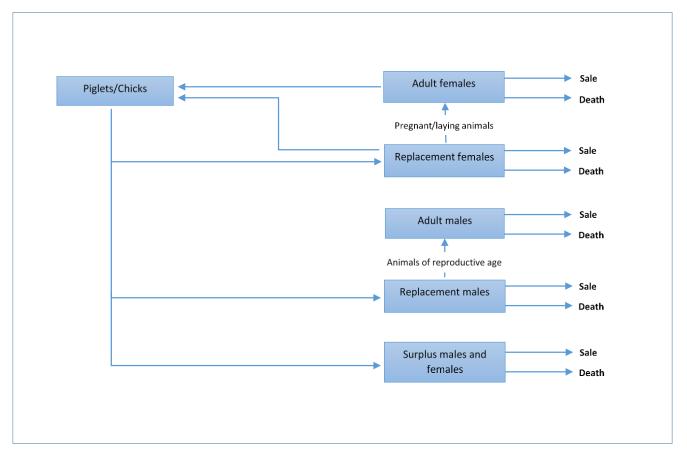
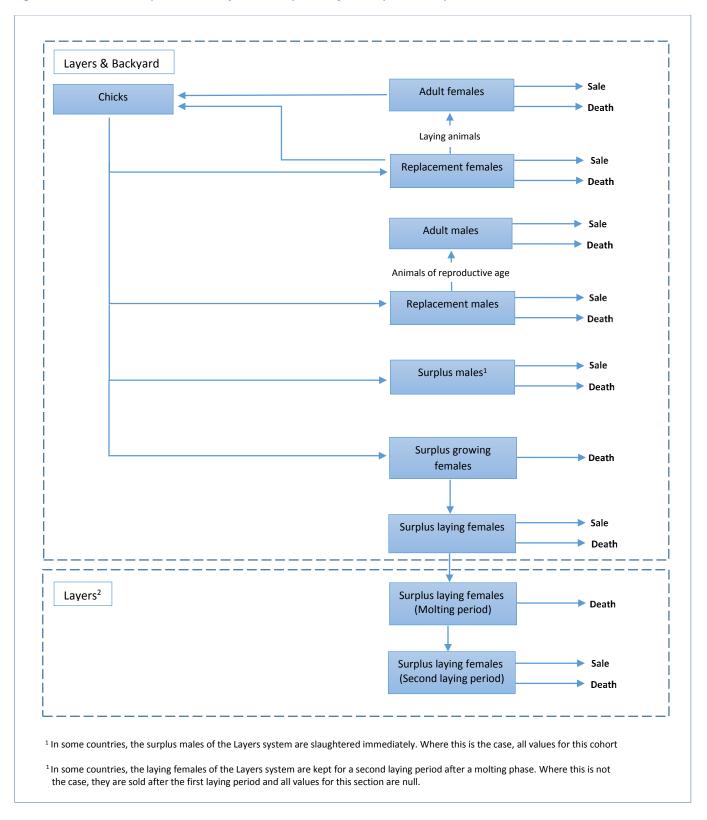



Figure 2.3 – Schematic representation of the herd dynamics for backyard and layer chickens

2.1 - HERD MODULE: LARGE RUMINANTS

This section provides the description of parameters and equations for cattle and buffaloes. Input data and parameters are described in section 2.1.1. Equations are provided in section 2.1.2.

2.1.1 – Input and output data and variables

Tables 2.2 and 2.3 provide the list of input data and parameters and output variables, respectively. Regional values for selected variables are provided in Tables 2.4 to 2.7 (Supplement S1).

TABLE 2.2. Cattle and buffaloes input data and parameters

Variable	Description	Unit
INITIAL AGGRE	GATED ANIMAL NUMBERS	
NCOWS	Total number of cattle per cell from GLW	heads
NBUFF	Total number of buffaloes per cell from GLW	heads
FNUM	National animal numbers that go into feedlots in a year	heads
LIVE WEIGHTS		
Ckg	Live weight of calves at birth	kg
AFkg	Live weight of adult cows	kg
AMkg	Live weight of bulls	kg
MFSkg	Live weight of female fattening animals at slaughter	kg
MMSkg	Live weight of male fattening animals at slaughter	kg
LWSTARTF,	Live weight of feedlot female fattening animals at the beginning and at the end of the fattening period,	kα
LWENDF	respectively	kg
LWSTARTM,	Live weight of feedlot male fattening animals at the beginning and at the end of the fattening period,	kg
LWENDM	respectively	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
DEATH, FERTILI	TY AND REPLACEMENT RATES	
DR1	Death rate female calves	percentage
DR1M	Death rate male calves	percentage
DR2	Death rate other animals than calves	percentage
FR	Fertility rate of adult female animals	percentage
FRRF	Rate of fertile replacement females. Note: a default value of 0.95 is used in all situation	fraction
RRF	Replacement of adult cows	percentage
OTHER INPUT V	ARIABLES	
AFC	Age at first calving	year
FATTDAY	Length of fattening period in feedlot operations	days
DCR	Dairy cow to total stock of population ratio	fraction
MFR	Bull to cow ratio	fraction

TABLE 2.3. Cattle and buffaloes output variables

Variable	Description	Unit
COHORTS IN A	LL SYSTEMS	
AF	Adult females, producing milk and calves	heads-year-1
RF	Replacement females, to replace culled and dead adult females	heads-year ⁻¹
AM	Adult males, used for reproduction and draught power	heads∙year ⁻¹
RM	Replacement males, to replace culled and dead adult males	heads-year-1
MF	Meat female animals not fattened in feedlots (cattle) or meat female animals (buffaloes)	heads∙year ⁻¹
MM	Meat male animals not fattened in feedlots (cattle) or meat male animals (buffaloes)	heads-year-1
CF	Female calves	heads∙year ⁻¹
СМ	Male calves	heads∙year ⁻¹
COHORTS SPEC	CIFIC TO FEEDLOTS	
MFt	Total meat female animals, both feedlot and non-feedlot (only cattle)	heads∙year ⁻¹
MFf	Meat females, surplus animals fattened for meat production in feedlots (only cattle)	heads∙year ⁻¹
MMt	Total meat male animals, both feedlot and non-feedlot (only cattle)	heads∙year ⁻¹
MMf	Meat males, surplus animals fattened for meat production in feedlots (only cattle)	heads∙year-¹
COHORT SPECI	FIC DATA	
<i>c</i> exit	Number of sold animals for meat production from cohort c	heads∙year ⁻¹
<i>c</i> in	Number of animals entering cohort c	heads∙year ⁻¹
сх	Number of dead animals in cohort c	heads∙year-¹
<i>c</i> kg	Live weight of cohort c	kg∙head ⁻¹
ANIMAL NUM	BERS SUBTOTALS	
DCATTLE	Total animal numbers in the cattle dairy herd	heads∙year ⁻¹
DBUFFALO	Total animal numbers in the buffalo dairy herd	heads∙year ⁻¹
M_HERD	Total fattening animals from dairy and beef herds	heads∙year-¹
DAILY WEIGHT	GAINS	
DWGF	Average daily weight gain of female animals from calf to adult weight	kg∙head ⁻¹ ∙day ⁻¹
DWGM	Average daily weight gain of male animals from calf to adult weight	kg·head ⁻¹ ·day ⁻¹
DWGFF	Average daily weight gainof female animals in feedlots (only cattle)	kg∙head ⁻¹ ·day ⁻¹
DWGMF	Average daily weight gainof male animals in feedlots (only cattle)	kg∙head ⁻¹ ·day ⁻¹
OTHER VARIA	BLES	
ASF	Age at slaughter of non-feedlot female animals	year
ASM	Age at slaughter of non-feedlot male animals	year
AFD	Adult female animals from dairy herd	heads-year-1

2.1.2 - Herd equations - Large ruminants

2.1.2.1 - Dairy herd - Female section

AF = DCR * NCOWS or DCR * NBUFF^a

AFin = AF * (RRF / 100) AFx = AF * (DR2 / 100) AFexit = AF * (RRF / 100) - AFx

CFin = AF * ((1 - (DR2 / 100)) * (FR / 100) + (RRF / 100)) * 0.5 * (1 - (DR1 / 100))CMin = AF * ((1 - (DR2 / 100)) * (FR / 100) + (RRF / 100)) * 0.5 * (1 - (DR1M / 100))

RFin = $((AF * (RRF / 100)) / FRRF) / (1 - (DR2 / 100))^{AFC}$

RFexit = ((AF * (RRF / 100)) / FRRF) - AFin

RFx = RFin - (AFin + RFexit) RF = (RFin + AFin) / 2 * AFC

MFin = CFin - Rfin

Unit: heads·year⁻¹

ASF = AFC * (MFSkg - Ckg) / (AFkg - Ckg)

Unit: year

^a Use NCOWS or NBUFF accordingly to the species.

Equations for cattle

MFtexit = MFin * $(1 - (DR2 / 100))^{ASF}$

MFtx = MFin – MFtexit

MFt = (MFin + MFtexit) / 2 * (AFC * (MFSkg - Ckg) / (AFkg - Ckg))

MFtd = MFt

Unit: heads-year⁻¹

Equations for buffaloes

MFexit = MFin * $(1 - (DR2 / 100))^{ASF}$

MFx = MFin - MFexit

MF = (MFin + MFexit) / 2 * (AFC * (MFSkg - Ckg) / (AFkg - Ckg))

Unit: heads-year-1

2.1.2.2 - Dairy herd - Male section

AM = AF * MFR

AMx = AM * (DR2 / 100) AMexit = AM / AFC - AMx

 $AMin = AM / AFC^b$

RMin = $AMin / (1 - (DR2 / 100))^{AFC}$

RMx = RMin - AMin

RM = (RMin + AMin) / 2 * AFC

MMin = CMin - RMin

Unit: heads-year-1

ASM = AFC * (MMSkg - Ckg) / (AMkg - Ckg)

Unit: year

Equations for cattle

 $MMtexit = MMin * (1 - (DR2 / 100))^{ASM}$

MMtx = MMin – MMtexit

MMt = (MMin + MMtexit) / 2 * (AFC * (MMSkg - Ckg) / (AMkg - Ckg))

MMtd = MMt

DCATTLE = AF + RF + MFt + AM + RM + MMt

AFD = AF Unit: heads·year⁻¹

Equations for buffaloes

MMexit = $MMin * (1 - (DR2 / 100))^{ASM}$

MMx = MMin – MMexit

MM = (MMin + MMexit) / 2 * (AFC * (MMSkg - Ckg) / (AMkg - Ckg))

DBUFFALO = AF + RF + MF + AM + RM + MM

AFD = AF

Unit: heads·year-1

14

^b For cattle and buffalos, bulls are replaced in relation to the age at first calving. This is done to prevent inbreeding, that is, bulls serving their own daughters.

2.1.2.3 - Beef herd

Equations for cattle

BCATTLE = NCOWS - DCATTLE

IF DCATTLE = 0

AF = NCOWS * (1 - MFR)

ELSE

AF = (AFD / DCATTLE) * BCATTLE

Unit: heads-year-1

Equations for buffaloes

BBUFFALO = NBUFF - DBUFFALO

IF DBUFFALO = 0

AF = NBUFF * (1 - MFR)

ELSE

AF = (AFD / DBUFFALO) * BBUFFALO

Unit: heads·year⁻¹

Once AF in non-dairy herd is estimated, the model follows the same equations shown in Sections 2.2.2.1 and 2.2.2.2.

2.1.2.4 - Feedlot animals

MFtd = Female fattening animals from dairy herd
MFtb = Female fattening animals from beef herd
MMtd = Male fattening animals from dairy herd
MMtb = Male fattening animals from beef herd

M HERD = MFtd + MMtd + MFtb + MFtb

Unit: animals·year⁻¹

DMFfrac = MFtd / M_HERD BMFfrac = MFtb / M_HERD DMMfrac = MMtd / M_HERD BMMfrac = MMtb / M HERD

Unit: fraction

MFfd = FNUM * DMFfrac
MFfb = FNUM * BMFfrac
MMfd = FNUM * DMMfrac
MMfb = FNUM * BMMfrac

Unit: animals-year-1

For clarity purposes, the suffixes ...d and ...b are omitted in all the steps in Female and Male sections below, as the equations for animals from dairy and beef herds are the same.

Female section

MFfexit = MFtexit * (MFf / MFt)

Unit: animals·year⁻¹

AFF = (LWSTARTF - Ckg) / (AFkg - Ckg) * AFC

ASFF = AFF + FATTDAY / 365

Unit: year

MF = MFt - MFf

MFexit = MFtexit * (MF / MFt)

Unit: $animals \cdot year^{-1}$

Male section

MMfexit = MMtexit * (MMf / MMt)

Unit: animals-year-1

AFM = (LWSTARTM - Ckg) / (AMkg - Ckg) * AFC

ASFM = AFM + FATTDAY / 365

Unit: year

MM = MMt - MMf

MMexit = MMtexit * (MM / MMt)

Unit: animals-year-1

2.1.2.5 – Average weights and growth rates

RFkg = (AFkg - Ckg) / 2 + CkgRMkg = (AMkg - Ckg) / 2 + CkgMFkg = (MFSkg - Ckg) / 2 + CkgMMkg = (MMSkg - Ckg) / 2 + Ckg

MFfkg = (((LWSTARTF - Ckg) / 2 + Ckg) * AFF + ((LWENDF - LWSTARTF) / 2 + LWSTARTF) *

(FATTDAY / 365)) / ASFF

MMfkg = (((LWSTARTM - Ckg) / 2 + Ckg) * AFM + ((LWENDM - LWSTARTM) / 2 + LWSTARTM) *

(FATTDAY / 365)) / ASFM

Unit: kg·head-1

DWGF = (AFkg - Ckg) / (365 * AFC)DWGM = (AMkg - Ckg) / (365 * AFC)

DWGFF = (DWGF * AFF + ((LWENDF – LWSTARTF) / FATTDAY) * (FATTDAY / 365)) / ASFF

DWGFM = (DWGM * AFM + ((LWENDM – LWSTARTM) / FATTDAY) * (FATTDAY / 365)) / ASFM

Unit: kg·animal⁻¹·day⁻¹

2.2 - HERD MODULE: SMALL RUMINANTS

This section provides the description of parameters and equations for sheep and goats. Input data and parameters are described in section 2.2.1. Equations are provided in section 2.2.2.

2.2.1 – Input and output data and variables

Tables 2.8 and 2.9 provide the list of input data and parameters and output variables, respectively. Regional values for selected variables are provided in Tables 2.10 and 2.11 (Supplement S1).

TABLE 2.8. Sheep and goats input data and parameters

	Sheep and goals input data and parameters	1
Variable	Description	Unit
INITIAL AGG	REGATED ANIMAL NUMBERS	
NSHEEP	Total number of sheep, per cell from GLW	heads
NGOAT	Total number of goats, per cell from GLW	heads
LIVE WEIGH	rs ·	
Ckg	Live weight of lambs or kids at birth	kg
AFkg	Live weight of adult female animals	kg
AMkg	Live weight of adult male animals	kg
MFSkg	Live weight of female fattening animals at slaughter	kg
MMSkg	Live weight of male fattening animals at slaughter	kg
DEATH, FER	TILITY AND REPLACEMENT RATES	
DR1	Death rate of lambs or kids	percentage
DR2	Death rate other animals than lambs or kids	percentage
FR	Fertility rate of adult female animals	percentage
FRRF	Rate of fertile replacement females. Note : a default value of 0.95 is used in all situation	fraction
RRF	Replacement rate female animals	percentage
OTHER INPU	T VARIABLES	
AFC	Age at first lambing/kidding	year
DSR	Dairy sheep or goats ratio, fraction of dairy sheep or goats of the total population	fraction
MFR	Ram to ewe (sheep) or does to bucks (goats) ratio	fraction
LINT	Lambing or kidding interval, period between two parturitions	days
LITSIZE	Litter size, number of lambs or kids per parturition	heads

TABLE 2.9. Sheep and goats output variables

Variable	Description	Unit
COHORTS		
AF	Adult females, producing milk and lambs or kids	heads∙year ⁻¹
RF	Replacement females, to replace culled and dead adult females	heads·year ⁻¹
AM	Adult males, used for reproduction	heads·year ⁻¹
RM	Replacement males, to replace culled and dead adult males	heads∙year ⁻¹
MF	Meat females, surplus animals fattened for meat production	heads·year ⁻¹
MM	Meat males, surplus animals fattened for meat production	heads∙year ⁻¹
С	Lambs or kids	heads·year ⁻¹
RF1	Replacement females at the end of first year	heads∙year ⁻¹
RFA	Replacement females in the midst of first year	heads·year ⁻¹
RFB	Replacement females in the midst of the second year	heads∙year ⁻¹
RM1	Replacement males at the end of first year	heads·year ⁻¹
RMA	Replacement males in the midst of first year	heads·year ⁻¹
RMB	Replacement males in the midst of the second year	heads·year ⁻¹
COHORT SPEC	IFIC DATA	· · · · · · · · · · · · · · · · · · ·
<i>c</i> exit	Number of sold animals for meat production from cohort c	heads∙year ⁻¹
<i>c</i> in	Number of animals entering cohort c	heads·year ⁻¹
сх	Number of dead animals in cohort c	heads·year-1
<i>c</i> kg	Live weight of cohort c	kg·head ⁻¹
ANIMAL NUM	BERS SUBTOTALS	
DSHEEP	Total animal numbers in the sheep dairy herd	heads·year-1
DGOAT	Total animal numbers in the goats dairy herd	heads·year-1
DAILY WEIGH	HT GAINS	
DWGF	Average daily weight gain of female animals from lamb or kid to adult weight	kg·head ⁻¹ ·day ⁻¹
DWGM	Average daily weight gain of male animals from lamb or kid to adult weight	kg·head ⁻¹ ·day ⁻¹
OTHER VARIA		
ASF	Age at slaughter of non-feedlot female animals	year
ASM	Age at slaughter of non-feedlot male animals	year
AFD	Adult female animals from dairy herd	heads·year-1

2.2.2 - Herd equations - Small ruminants

2.2.2.1 - Dairy herd - Female section

AF = DSR * NSHEEP or DSR * NGOAT

AFin = AF * (RRF / 100) AFx = AF * (DR2 / 100) AFexit = AF * (RRF / 100) - AFx

Cin = AF * ((1 - (DR2 / 100)) * (((365 * FR) / LINT) / 100) * LITSIZE + (RRF / 100)) RFin = ((AF * (RRF / 100)) / FRRF) / ((1 - (DR1 / 100)) * (1 - (DR2 / 100))(AFC - 1))

RFexit = ((AF * (RRF / 100)) / FRRF) - AFin

RFx = RFin - (AFin + RFexit) RF1 = RFin * (1 - (DR1 / 100))

RFA = (RFin + RF1)/2

RFB = ((RF1 + AFin) / 2) * (AFC - 1)

RF = ((RFin + RF1) / 2) + (((RF1 + AFin) / 2) * (AFC - 1))

MFin = Cin / 2 - Rfin

Unit: heads·year⁻¹

ASF = AFC * (MFSkg - Ckg) / (AFkg - Ckg)

Unit: year

MFexit = MFin * $(1 - (DR1 / 100))^{ASF}$

MFx = MFin - MFexit

MF = (MFin + MFexit) / 2 * ASF

Unit: heads-year-1

2.2.2.2 - Dairy herd - Male section

AM = AF * MFR

AMx = AM * (DR2 / 100) $AMexit = AM / (3 * AFC^{c}) - AMx$

AMin = AM / (3 * AFC)

RMin = AMin / $((1 - (DR1 / 100)) * (1 - (DR2 / 100))^{(AFC - 1)})$

RM1 = RMin * (1 - (DR1 / 100))

RMA = (RMin + RM1) / 2

RMB = ((RM1 + AMin) / 2) * (AFC - 1)

RMx = RMin - AMin

RM = ((RMin + RM1) / 2) + ((RM1 + AMin) / 2) * (AFC - 1)

MMin = Cin / 2 - RMin

Unit: heads-year-1

ASM = AFC * (MMSkg - Ckg) / (AMkg - Ckg)

Unit: year

MMexit = $MMin * (1 - (DR1 / 100))^{ASM}$

MMx = MMin - MMexit

MM = (MMin + MMexit) / 2 * ASM

Unit: heads·year⁻¹

^c For cattle, bulls are replaced in relation to the age of first calving. This is done to prevent inbreeding, bulls serving their own daughters. In the case of sheep, farmers tend to exchange rams. It is assumed that a ram is exchanged twice, which means that he can serve for three periods, so the replacement rate is only one third of what it would be on the basis of the AFC.

Equations for sheep

DSHEEP = AF + RF + MF + AM + RM + MM

AFD = AF Unit: $heads \cdot year^{-1}$

Equations for goats

DGOAT = AF + RF + MF + AM + RM + MM

AFD = AF

Unit: heads-year-1

2.2.2.3 - Non-dairy herd

Equations for sheep

BSHEEP = NSHEEP - DSHEEP

IF DSHEEP = 0

AF = NSHEEP * (1 - MFR)

ELSE

AF = (AFD / DSHEEP) * BSHEEP

Unit: heads·year-1

Equations for goats

BGOAT = NGOAT - DGOAT

IF DGOAT = 0

AF = NGOAT * (1 - MFR)

ELSE

AF = (AFD / DGOAT) * BGOAT

Unit: heads·year⁻¹

Once AF in non-dairy herd is estimated, the model follows the same equations shown in Sections 2.2.2.1 and 2.2.2.2.

2.2.2.4 – Average weights and growth rates

RFkg = (AFkg + Ckg)/2

RF1kg = Ckg + ((AFkg - Ckg) / AFC)

RFAkg = (Ckg + RF1kg) / 2RFBkg = (RF1kg + AFkg) / 2RMkg = (AMkg + Ckg) / 2

RM1kg = Ckg + ((AMkg - Ckg) / AFC)

RMAkg = (Ckg + RM1kg) / 2RMBkg = (RM1kg + AMkg) / 2MFkg = (MFSkg + Ckg) / 2 + CkgMMkg = (MMSkg + Ckg) / 2 + Ckg

Unit: kg·head-1

DWGF = (AFkg - Ckg) / (365 * AFC)DWGM = (AMkg - Ckg) / (365 * AFC)

Unit: kg·head⁻¹·day⁻¹

2.3 - HERD MODULE: PIGS

This section provides the description of parameters and equations for pigs. Input and output data and parameters are described in section 2.3.1. Equations are provided in section 2.3.2.

2.3.1 – Input and output data and variables

Tables 2.12 and 2.13 provide the list of input data and parameters and output variables, respectively. Regional values for selected variables are provided in Tables 2.14 to 2.16 (Supplement S1).

TABLE 2.12. Pigs input data and parameters

TABLE 2.12. Figs input data and parameters		
Variable	Description	Unit
INITIAL AGG	REGATED ANIMAL NUMBERS	
NPIGS	Total animal number, per cell and production system	heads∙year ⁻¹
LIVE WEIGHT	S	
Ckg	Live weight of piglets at birth	kg
Wkg	Live weight of piglets at weaning age	kg
AFkg	Live weight of adult female animals	kg
AMkg	Live weight of adult male animals	kg
M2Skg	Live weight of fattening animals at slaughter	kg
DEATH, FERT	ILITY AND REPLACEMENT RATES	
DR1	Death rate of piglets before weaning age	percentage
DRR2A	Death rate of replacement animals between weaning and adult ages	percentage
DRR2B	Death rate of adult animals	percentage
DRF2	Death rate of fattening animals	percentage
FR	Annual parturitions per sow	parturition·year ⁻¹
FRRF	Rate of fertile replacement females. Note : a default value of 0.95 is used in all situation	fraction
RRF	Replacement rate female animals	percentage
RRM	Replacement rate male animals	percentage
OTHER INPU	T VARIABLES	
WA	Weaning age	days
LITSIZE	Litter size, number of piglets per parturition	heads·parturition ⁻¹
MFR	Boar to sow ratio	fraction
DWG2	Average daily weight gain of fattening animals	kg∙head ⁻¹ ∙day ⁻¹

TABLE 2.13. Pigs output variables

IADLE 2.13.	Pigs output variables	
Variable	Description	Unit
PRINCIPAL CO	HORTS	
AF	Adult females, producing piglets	heads∙year ⁻¹
RF	Replacement females, to replace culled and dead adult females	heads∙year ⁻¹
AM	Adult males, used for reproduction	heads∙year ⁻¹
RM	Replacement males, to replace culled and dead adult males	heads∙year ⁻¹
M2	Meat animals, female and male fattening animals for meat production	heads∙year ⁻¹
С	Piglets	heads∙year ⁻¹
COHORT SPEC	FIC DATA	
<i>c</i> exit	Number of sold animals for meat production from cohort c	heads∙year ⁻¹
<i>c</i> in	Number of animals entering cohort c	heads∙year ⁻¹
<i>c</i> x	Number of dead animals in cohort c	heads∙year ⁻¹
<i>c</i> kg	Live weight of cohort c	kg·head ⁻¹
DAILY WEIGH	T GAINS	
DWGF	Average daily weight gain of female young replacement animals	kg∙head ⁻¹ ·day ⁻¹
DWGM	Average daily weight gain of male young replacement animals	kg∙head ⁻¹ ·day ⁻¹
OTHER VARIA	BLES	
AFCF	Age at first parturition calculated in basis of the daily weight gain	year
AFCM	Age at which boars are considered adults in the basis of the daily weight gain	year
A2S	Length of fattening period for meat animals	year

2.3.2 - Herd equations - Pigs

2.3.2.1 - Female section

AF = NPIGS / 10 AFin = AF * (RRF / 100) AFx = AF * (DRR2B / 100) AFexit = AF * (RRF / 100) – AFx

Cin = AF * ((1 - (DRRB2 / 100)) * FR * LITSIZE + (RRF / 100) * LITSIZE) * (1 - (DR1 / 100))

Unit: heads·year⁻¹

DWGF = AFkg / ((AFkg + AMkg) / 2) * DWG2

Unit: kg·head-1·year-1

AFCF = (AFkg - Wkg) / (365 * DWGF) + (WA / 365)

Unit: year

RFin = $((AF * (RRF / 100)) / FRRF) / (1 - (DRR2A / 100))^{AFCF}$

RFexit = ((AF * (RRF / 100)) / FRRF) - AFin

RFx = RFin - (AFin + RFexit)

RF = (RFin + AFin) / 2 * ((AFkg - Wkg) / (365 * DWGF) + (WA / 365))

MFin = Cin / 2 - RFin

Unit: heads·year⁻¹

2.3.2.2 - Male section

AM = AF * MFR

AMx = AM * (DRR2B / 100)

Unit: heads·year⁻¹

DWGM = AMkg / ((AFkg + AMkg) / 2) * DWG2

Unit: kg·head-1-year-1

AFCM = (AMkg - Wkg) / (365 * DWGM) + (WA / 365)

Unit: year

AMexit = AM * RRM / 100 - AMxAMin = AM * RRM / 100

RMin = AMin / $(1 - (DRR2A / 100))^{AFCM}$

RMx = RMin - AMin

RM = (RMin + AMin) / 2 * ((AMkg - Wkg) / (365 * DWGM) + (WA / 365))

MMin = Cin / 2 - RMin

Unit: heads-year-1

2.3.2.3 – Fattening section

M2in = MFin + MMin

Unit: heads-year-1

A2S = (M2Skg - Wkg) / (365 * DWG2)

Unit: year

M2exit = $M2in * (1 - (DRF2 / 100))^{A2S}$

M2x = M2in - M2exit

M2 = (M2in + M2exit) / 2 * ((M2Skg - Wkg) / (365 * DWG2))

Unit: heads·year⁻¹

2.3.2.4 – Average weights

RFkg = (AFkg - Wkg) / 2 + WkgRMkg = (AMkg - Wkg) / 2 + WkgM2kg = (M2Skg - Wkg) / 2 + Wkg

Unit: kg·head⁻¹

2.4 - HERD MODULE: CHICKEN

This section provides the description of parameters and equations for chicken. Input and output data and parameters are described in section 2.4.1. Equations are provided in section 2.4.2 to 2.4.4.

2.4.1 – Input and output data and variables

Tables 2.17 and 2.18 provide the list of input data and parameters and output variables, respectively. Regional values for selected variables are provided in Tables 2.19 to 2.21 (Supplement S1).

TABLE 2.17. Chicken input data and parameters

Variable	Description	Unit
INITIAL AGGREGA	TED ANIMAL NUMBERS	
AFC	Age at first laying (hens) or reproduction (roosters)	days
NCHK	Total number of chicken per cell	heads
LIVE WEIGHTS		
ALL SYSTEMS		
Ckg	Live weight of chicks at birth	kg
BACKYARD SYSTEMS		, .
AF2kg	Live weight of females at the end of the laying period	kg
AM2kg	Live weight of males at the end of the laying period	kg
M2Skg	Live weight of surplus animals at slaughter	kg
LAYERS AND BROILE		
AF1kg	Live weight of female reproductive animals at the start of the laying period	kg
AF2kg	Live weight of female reproductive animals at the end of the laying period	kg
BROILERS	, , , , , , , , , , , , , , , , , , , ,	
M2Skg	Live weight at slaughter of female and male broiler animals	kg
_	AND REPLACEMENT RATES	
ALL SYSTEMS		
DR1	Chick mortality rate during the first 16-17 weeks. Not an annual rate	percentage
FRRF	Fertility rate of replacement female animals. Note : a default value of 0.95 is used in all situation	fraction
BACKYARD SYSTEMS		
DR2	Death rate adult females and males	percentage
LAYERS		percentage
DRL2	Death rate for the laying period	percentage
DRM	Death rate during the molting period. Note : a default value of 15 is used in all situation	percentage
BROILERS	Death rate dailing the moting period field a death rate of 20 to deed in an obtain.	percentage
DRB2	Death rate for broiler animals laying period	percentage
DRL2	Death rate for the laying period	percentage
OTHER INPUT VA		paratriage
ALL SYSTEMS	MADELS .	
MFR	Rooster to hen ratio per production system	fraction
EGGSyear	Annual laid eggs per hen per production system	eggs-year-1
EGGwght	Average egg weight	gr∙egg ⁻¹
HATCH	Hatchability, fraction of laid eggs that actually give a chick	fraction
BACKYARD SYSTEMS		iraction
AFS	Age at which adult animals are slaughtered	days
CYCLE	Number of laying cycles	# cycles
CLTSIZE	Laid eggs per cycle	eggs·cycle-1
LAYERS	2010 C565 PC. CYCIC	C883 c4cic
LAY1weeks	Length of the first laying period	weeks
LAY2weeks	Length of the second laying period. Note : a default value of 30 is used in all situation	weeks
MOLTweeks	Length of the molting period. Note : a default value of 6 is used in all situation	weeks
BROILERS	zengen er ene moreng periou. Heter a deraut value er e is asca in an situation	WCERS
A2S	Age at slaughter for meat animals	days
BIDLE	Idle days between two production cycles. Note : a default value of 14 is used in all situation	days
LAYweeks	Length of the laying period	weeks

TABLE 2.18. Chicken output variables

Variable	Description	Unit
PRINCIPAL COHOR	rs	
BACKYARD SYSTEMS		
AF	Adult females, used for reproduction	heads·year ⁻
RF	Replacement females, to replace culled and dead adult females	heads·year ⁻
AM	Adult males, used for reproduction	heads-year
RM	Replacement males, to replace culled and dead adult males	heads-year
MF1, MF2	Growing and adult surplus females	heads·year
MM	Surplus males, sold for meat	heads-year
С	Chicks	heads-year
LAYERS		, , , , , ,
AF	Adult females, used for reproduction	heads·year
RF	Replacement females, to replace culled and dead adult females	heads year
AM	Adult males, used for reproduction	heads year
RM	Replacement males, to replace culled and dead adult males	heads year
		heads-year
MF1	Growing laying females	
MF2	Adult laying females during the first laying period	heads·year
MF3	Adult laying females during the molting period	heads·year
MF4	Adult laying females during the second laying period	heads·year
MM	Surplus males, sold for meat	heads∙year
С	Chicks	heads∙year
BROILERS		
AF	Adult females, used for reproduction	heads∙year
RF	Replacement females, to replace culled and dead adult females	heads∙year
AM	Adult males, used for reproduction	heads·year
RM	Replacement males, to replace culled and dead adult males	heads-year
M2	Adult female and male broiler animals	heads∙year
С	Chicks	heads·year
COHORT SPECIFIC I	ΣΑΤΔ	,
cexit	Number of sold animals for meat production from cohort <i>c</i>	heads·year
<i>c</i> in	Number of animals of meat production from control Number of animals entering cohort c	heads·year
	Number of dead animals in cohort <i>c</i>	heads-year
CX		
ckg	Live weight of cohort c	kg·head
DAILY WEIGHT GA	INS	
BACKYARD SYSTEMS		
DWGF1	Average daily weight gain of all hens in their youth period	kg∙head ⁻¹ ∙day
DWGF2	Average daily weight gain of reproductive and surplus hens in their laying and fattening period	kg∙head ⁻¹ ·day
DWGM1	Average daily weight gain of all male chickens in their youth period	kg∙head ⁻¹ ∙day
DWGM2	Average daily weight gain of reproductive roosters in their reproductive period	kg∙head ⁻¹ ∙day
LAYERS		
DWGF1	Average daily weight gain of all hens in their youth period	kg·head ⁻¹ ·day
DWGF2	Average daily weight gain of layers and reproductive hens in their laying period	kg·head ⁻¹ ·day
DWGM1	Average daily weight gain of all male chickens in their youth period	kg·head-1·day
DWGM2	Average daily weight gain of reproductive roosters in their reproductive period	kg·head-1·day
BROILERS	Therage daily weight gain of reproductive roosters in their reproductive period	Ng Head day
DWGF	Average daily weight gain of reproductive female animals	kg∙head-¹-day
		kg·head -1-day
DWGM	Average daily weight gain of reproductive male animals	
DWGB	Average daily weight gain of broiler animals	kg∙head ⁻¹ ∙day
OTHER VARIABLES		
BACKYARD SYSTEMS		
AF1kg, AM1kg	Live weight of female and male reproductive animals at the start of the laying period	kg∙head
AFkg, AMkg	Average live weight of adult females and males, respectively	kg∙head
MMSkg	Live weight of male surplus animals at slaughter	kg∙head
EGGconsAF	Number of eggs used for human consumption	egg∙head ⁻¹ ·year
LAYERS		
AF1kg, AM1kg	Live weight of female and male reproductive animals at the start of the laying period	kg·head
AF2kg, AM2kg	Live weight of female and male reproductive animals at the end of the laying period	kg·head
AFkg, AMkg	Average live weight of adult females and males, respectively	kg·head
MF11kg, MF22kg	Average live weight of laying hens during their growing and laying period, respectively	kg·head
MMkg	Average live weight of raying heris during their growing and raying period, respectively Average live weight of surplus male animals	kg·head
ITIITE	Average live weight of surplus male allimas	kg-neau
RPOHERS		
Broilers AM1kg, AM2kg	Live weight of male reproductive at the start and the end of the reproductive period	kg·head

2.4.2 - Herd equations - Backyard chicken

2.4.2.1 - Reproductive female section

AF = NCHK / 100

Unit: heads·year-1

RRF = $365 / (AFS - AFC)^d$

Unit: year

AFin = AF * RRF

AFx = AF * (DR2 / 100) AFexit = AF * RRF - AFx

Unit: heads-year-1

EGGSrepro = CYCLE * CLTSIZE

Unit: eggs·year⁻¹

IF EGGSrepro > EGGSyear

EGGSrepro = EGGSyear

EGGconsAF = EGGSyear – EGGSrepro

Unit: eggs·year¹

Cin = (AF * (1 – (DR2 / 100)) * EGGSrepro) * HATCH

RFin = ((AF * RRF) / FRRF) / (1 - (DR1 / 100))

RFexit = ((AF * RRF) / FRRF) - AFinRFx = RFin - (AFin + RFexit)

RF = (RFin + AFin) / 2 * (AFC / 365)

MF1in = Cin / 2 - RFin

Unit: heads·year-1

2.4.2.2 - Reproductive male section

AM = AF * MFR

Unit: heads-year-1

RRM = RRF

Unit: year

AMx = AM * (DR2 / 100) AMexit = AM * RRM - AMx

AMin = AM * RRM

RMin = AMin / (1 - (DR1 / 100))

RMx = RMin - AMin

RM = (RMin + AMin) / 2 * (AFC / 365)

MMin = Cin / 2 - RMin

Unit: heads·year-1

^d The replacement rate is defined as the inverse of the productive lifespan expressed in years. The productive lifespan is the period that goes from the age at which animals are reproductive (AFC) to the age at which they are slaughtered (AFS). It is assumed that replacement rate for roosters (RRM) is the same as for hens (RRF).

2.4.2.3 - Male fattening section

MMexit = MMin * (1 - (DR1 / 100))

MMx = MMin - MMexit

MM = ((MMin + MMexit) / 2) * (AFC / 365)

Unit: heads·year⁻¹

2.4.2.4 - Female fattening and egg production section

Growing period

MF1x = MF1in * (DR1 / 100)

MF1exit = (MF1in - MF1x) * (1 - FRRF)MF2in = (MF1in - MF1x) * FRRF

MF1 = ((MF1in + MF2in) / 2) * (AFC / 365)

Unit: heads-year-1

Laying period

MF2exit = MF2in * $(1 - (DR2 / 100))^{(AFS - AFC) / 365}$

MF2x = MF2in - MF2exit

MF2 = ((MF2in + MF2exit) / 2) * ((AFS - AFC) / 365)

Unit: heads·year⁻¹

EGGconsMF = EGGSyear

Unit: eggs-year-1

2.4.2.5 - Average characteristics

AF1kg = M2Skg * (AF2kg / ((AF2kg + AM2kg) / 2)) AAA1kg = M2Skg * (AAA2kg / ((AF2kg + AM2kg) / 2))

AM1kg = M2Skg * (AM2kg / ((AF2kg + AM2kg) / 2))

MF1Skg = AF1kg MF2Skg = AF2kg

MMSkg = M2Skg * (AM2kg / ((AF2kg + AM2kg) / 2))

RFkg = (AF1kg - Ckg) / 2 + CkgRMkg = (AM1kg - Ckg) / 2 + CkgAFkg = (AF2kg - AF1kg) / 2 + AF1kgAMkg = (AM2kg - AM1kg) / 2 + AM1kg

MF1kg = RFkg

MF2kg = AFkg

MMkg = (MMSkg - Ckg) / 2 + Ckg

Unit: kg·head⁻¹

DWGF1 = (AF1kg - Ckg) / AFC

DWGF2 = (AF2kg - AF1kg) / (AFS - AFC)

DWGM1 = (AM1kg - Ckg) / AFC

DWGM2 = (AM2kg - AM1kg) / (AFS - AFC)

Unit: $kg \cdot head^{-1} \cdot day^{-1}$

2.4.3 - Herd equations - Layers

2.4.3.1 - Lay time

IF molting is not done

LAYtime = LAY1weeks / 52

IF molting is done

LAYtime = (LAY1weeks + LAY2weeks + MOLTweeks) / 52

Unit: year

2.4.3.2 - Reproductive female section

AF = NCHK / 100 AFin = AF / LAY1time

AFx = AF * ((52 * DRL2 / LAY1weeks) / 100)

AFexit = AF / LAYtime - AFx

Cin = AF * (1 - (DRL2 / 100)) * EGGSyear * HATCHRFin = ((AF / LAYtime) / FRRF) / (1 - (DR1 / 100))

RFexit = ((AF / LAYtime) / FRRF) - AFin

RFx = RFin - (AFin + RFexit)

RF = (RFin + AFin) / 2 * (AFC / 365)

MF1in = Cin / 2 - RFin

Unit: heads-year-1

2.4.3.3 - Male reproduction section

AM = AF * MFR

AMx = AM * ((52 * DRL2 / LAY1weeks) / 100)

AMexit = AM / LAYtime - AMx

AMin = AM / LAYtime

RMin = AMin / (1 - (DR1 / 100))

RMx = RMin - AMin

RM = (RMin + AMin) / 2 * (AFC / 365)

MMin = Cin / 2 - RMin

Unit: heads·year⁻¹

2.4.3.4 - Laying section

Growing period

MF2in = MF1in * (1 - (DR1 / 100))

MF1x = MF1in - MF2in

MF1 = ((MF1in + MF2in) / 2) * (AFC / 365)

Unit: heads-year-1

Laying period

MF2exit = MF2in * (1 - (DRL2 / 100))

MF2x = MF2in - MF2exit

MF2 = ((MF2in + MF2exit) / 2) * (LAY1weeks / 52)

IF molting is not done

MF4exit = MF2exit MF3 = 0 MF4 = 0

Unit: heads·year⁻¹

IF molting is done

MF3exit = MF2exit * (1 - (DRM / 100))

MF3x = MF2exit - MF3exit

MF3 = ((MF2exit + MF3exit) / 2) * (MOLTweeks / 52)

MF4exit = MF3exit * (1 - (DRL2 / 100))

MF4x = MF3exit - MF4exit

MF4 = ((MF3exit + MF4exit) / 2)) * (LAY2weeks / 52)

Unit: heads-year-1

2.4.3.5 - Male meat production section

IF Country is OECD

MMexit = 0 MMx = 0 MM = 0

Unit: heads-year-1

IF Country is not OECD

MMexit = MMin * (1 - (DR1 / 100))

MMx = MMin - MMexit

MM = ((MMin + MMexit) / 2) * (AFC / 52)

Unit: heads·year-1

2.4.3.6 – Average weight and growth rates

AF1kg = MF1kg AF2kg = MF2kg AM1kg = 1.3 * MF1kg AM2kg = 1.3 * MF2kg MM1kg = 1.3 * MF1kg

MF11kg = (MF1kg - Ckg) / 2 + Ckg

RFkg = MF11kg

MF22kg = (MF2kg - MF1kg) / 2 + MF1kg

AFkg = MF22kg

AMkg = (AM2kg - AM1kg) / 2 + AM1kgRMkg = (AM1kg - Ckg) / 2 + CkgMMkg = (MM1kg - Ckg) / 2 + Ckg

Unit: kg·head⁻¹

DWGF1 = (MF1kg - Ckg) / (365 * AFC)

DWGF2 = (MF2kg - MF1kg) / (7 * LAY1weeks)

DWGM1 = (AM1kg - Ckg) / (365 * AFC)

DWGM2 = (AM2kg - AM1kg) / (365 * (LAY1weeks / 52))

Unit: kg·head⁻¹·day⁻¹

2.4.4 - Herd equations - Broilers

2.4.4.1 - Reproductive female section

AF = NCHK / 100

AFin = AF/(LAYweeks/52)

AFx = AF * (((52 * DRL2 / LAYweeks)) / 100)

AFexit = AF * RRF - AFx

Cin = AF * (1 - (DRL2 / 100)) * EGGSyear * HATCHRFin = ((AF / (LAYweeks / 52)) / FRRF) / (1 - (DR1 / 100))

RFexit = ((AF/(LAYweeks/52))/FRRF) - AFin

RFx = RFin - (AFin + RFexit)

RF = ((RFin + AFin) / 2) * (AFC / 365)

MFin = Cin / 2 - RFin

Unit: heads-year-1

2.4.4.2 – Male reproduction section

AM = AF * MFR

AMx = AM * ((52 * DRL2 / LAYweeks) / 100)

AMexit = AM / (LAYweeks / 52) - AMx

AMin = AM / (LAYweeks / 52)RMin = AMin / (1 - (DR1 / 100))

RMx = RMin - AMin

RM = ((RMin + AMin) / 2) * (AFC / 365)

MMin = Cin / 2 - RMin

Unit: heads-year-1

2.4.4.3 – Broilers section

M2in = MFin + MMin

M2exit = M2in * (1 - (DRB2 / 100))

M2x = M2in - M2exit

M2 = ((M2in + M2exit) / 2) * (A2S + (BIDLE / 365))

Unit: heads·year⁻¹

2.4.4.4 – Average weight and growth rates

AFkg = (AF2kg + AF1kg) / 2RFkg = (AF1kg - Ckg) / 2 + Ckg

AM1kg = 1.3 * AF1kg AM2kg = 1.3 * AF2kg AMkg = 1.3 * AFkg

RMkg = (AM1kg - Ckg) / 2 + CkgM2kg = (M2Skg - Ckg) / 2 + Ckg

Unit: kg·head⁻¹

DWGF0 = (AF1kg - Ckg) / (365 * AFC)DWGM0 = (AM1kg - Ckg) / (365 * AFC)

Unit: kg·head⁻¹·day⁻¹

DWG2B = (M2Skg - Ckg) / (365 * A2S)

Unit: kg·head-1·day-1

CHAPTER 3 – FEED RATION AND INTAKE MODULE

Animal diets are one of the most important aspects of livestock production. They largely determine animal productivity, land use and emissions from enteric fermentation, manure and feed production. Feed intake (kg of dry matter per animal) depends on the energy requirement of animals. Feed intake is calculated for each species and cohort based on the feed ration, its nutritional value and energy requirement of animals.

The functions of the 'Feed ration and intake' module are to:

- Define the **composition** of the ration for each species and production system;
- Calculate the **nutritional values** of the ration per kilogram of dry matter, and;
- Calculate the average **energy requirement** and the related **feed intake** of each animal.

The schematic representation of this chapter is composed of different figures, for ruminants refer to Figures 3.1 to 3.3 for the composition of the ration and Figure 3.6 for the energy requirement and feed intake calculation; and for the monogastrics Figures 3.4 to 3.5 and Figure 3.7 respectively.

3.1 – CROP YIELDS AND PASTURE PRODUCTIVITY

Crops are used as animal feed in three main forms: 1) as the main crop (e.g. grains or whole crops such as grass or silage); 2) as crop residues (such as straw) or 3) as agro-industrial by-products (e.g. brans and cakes). Data on fresh matter yields per hectare of main crops and their respective land area were taken from a modified version of Global Agro-Ecological Zones (GAEZ 3.0) and Haberl *et al.* (2007) to estimate the above-ground net primary productivity for pasture. These data are used for two main purposes: 1) estimating the local availability of feed for livestock (see Sections 3.2 and 3.3) and 2) allocating the emissions associated with feed production between the crop and the crop co-products (crop residues and by-products) according to the kind of feed materials used by the animals (see Chapter 6, Section 6.5).

To this scope, a first step is the conversion of the fresh matter of each crop to dry matter, to allow for comparability between different materials in terms of mass and emission intensity. To do so, default dry matter (DM) contents for each crop are used from existing database, literature review and expert opinion, following Equation 3.1:

Equation 3.1 (Crops)

 $DMYG_{crop} = FMYG_{crop} * DM_{crop} / 100$

Where:

DMYG_{crop} = gross dry matter yield of each crop, kg DM·ha⁻¹

FMYG_{crop} = fresh matter yield of each crop, kg DM·ha⁻¹. Input spatial grids from Haberl et al. (2007) or modified

from GAEZ 3.0.

DM_{crop} = dry matter content of each crop, percentage. Values are given in Table 3.1 (Supplement S1).

In those cases where the crop residues are needed, either as feed material or for allocation purposes, the yield is calculated, in a second step, using the IPCC formulae (IPCC 2006, Chapter 11, Table 11.2), as shown in Equation 3.2:

Equation 3.2 (Crop residues)

DMYG_{crop} * Slope_{-crop} + Intercept_{-crop}

Where:

DMYG_{cr} = gross dry matter yield of the crop residues of each crop, kg DM·ha⁻¹

DMYG_{crop} = gross dry matter yield of each crop, kg DM·ha⁻¹

Slope-crop = slope from IPCC equation for each crop. Values are given in Table 3.1 (Supplement S1).

Intercept-crop = intercept from IPCC equation for each crop. Values are given in Table 3.1 (Supplement S1).

3.2 - RUMINANTS' FEED RATIONS

Typically, for ruminant species, the major feed ingredients include:

- Grass: ranges from natural pasture and roadsides to improved and cultivated grasslands and leys.
- Feed crops: crops specially grown to feed livestock, e.g. maize silage or grains.
- Tree leaves: browsed in forests or collected and carried to livestock.
- Crop residues: plant material left over from food or other crops, such as straw or stover, left over after harvesting the crop.
- Agro-industrial by-products and wastes: by-products from the processing of crops such as oilseeds, cereals, sugarcane, and fruit. Examples include cottonseed cakes, rapeseed cakes and brans.
- Concentrates: Any feed containing relatively low fibre (< 20%) and high total digestible nutrients (> 60%). These are feed materials used with other components, to improve the nutritive balance of the complete feed, and intended to be further diluted and mixed to produce a supplement or a complete feed.

The feed ingredients above are grouped in four broad categories of feed are considered: roughages, cereals, by-products and concentrates. The complete list of feed materials considered in GLEAM is shown in Table 3.2.

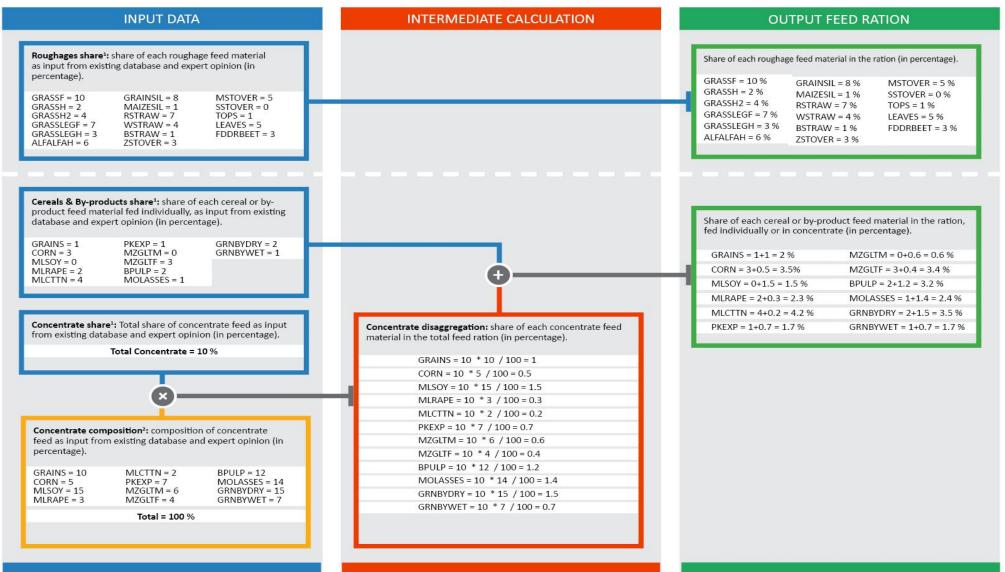
In all livestock production systems, the feed materials, present in the ration, depend on the presence of pasture and fodder, the crops grown and their respective yields. The fraction of concentrates in the ration varies widely, according to the need to complement locally available feed, the purchasing power of farmers, and access to markets. The balance of forage, crops and by-products must be reasonable in order to match animal performance. The proportion of each feed material is determined differently for industrialized and developing regions, for 2 main reasons. First, while in the industrialized countries, on the basis of literature review and expert consultation, it was possible to completely define the feed ration composition, in terms of the proportions of each feed material, this was not the case for the rest of the world. Second, we assume that the feed ration composition, at least the forage part, is strictly related to what is available on the ground. For further details see Sections 3.2.2 and 3.2.3.

For ruminant species, three feeding groups of animals are defined due to their distinctive feeding necessities: adult females (AF), replacement animals and adult males (AM, RF, RM) and surplus males and female animals (MF, MM). A specific group is also defined for animals raised in feedlot (Table 3.3).

To help the reader in understanding the GLEAM methodology for estimating the feed ration composition, a schematic representation with hypothetical figures has been drawn for ruminant species in Figures 3.1 to 3.3.

Moreover, Tables 3.7 to 3.13 (Supplement S1) present average composition of feed rations for ruminant species at regional level.

^e A complete feed is a nutritionally adequate feed for animals, compounded by a specific formula to be fed as the sole ration and capable of maintaining life and/or promoting production without any additional substance being consumed except water.


TABLE 3.2. List of feed materials for ruminant species

		materials for ruminant species
Number	Material	Description
Roughage		
1	GRASSF	Any type of natural or cultivated fresh grass grazed or fed to the animals.
2	GRASSH	Hay (grass is cut, dried and stored) or silage (grass is cut and fermented) from any natural or cultivated grass.
3	GRASSH2	Hay from adjacent areas.
4	GRASSLEGF	Fresh mixture of any type of grass and leguminous plants that is fed to the animals.
5	GRASSLEGH	Hay or silage produced from a mixture of any type of grass and leguminous plants.
6	ALFALFAH	Hay or silage from alfalfa (Medicago sativa)
7	GRAINSIL	Silage from whole barley (Hordeum vulgare), oat (Avena sativa), buckwheat (Fagopyrum esculentum) and
		fonio (<i>Digitaria spp.</i>) plants.
8	MAIZESIL	Silage from whole maize (Zea mays) plants.
9	RSTRAW	Fibrous residual plant material such as straw, brans, leaves, etc. from rice (<i>Oryza spp.</i>) cultivation.
10	WSTRAW	Fibrous residual plant material such as straw, brans, leaves, etc. from wheat (<i>Triticum spp.</i>) cultivation.
11	BSTRAW	Fibrous residual plant material such as straw, brans, leaves, etc. from barley (<i>Hordeum vulgare</i>), rye (<i>Secale cereale</i>) or oat (<i>Avena sativa</i>) cultivation.
12	ZSTOVER	Fibrous residual plant material such as straw, brans, leaves, etc. from maize (Zea mays) cultivation.
13	MSTOVER	Fibrous residual plant material such as straw, brans, leaves, etc. from millet (<i>Pennisetum glaucum, Eleusine coracana, Panicum miliaceum, etc</i>) cultivation.
14	SSTOVER	Fibrous residual plant material such as straw, brans, leaves, etc. from sorghum (Sorghum spp.) cultivation.
15	TOPS	Top portion of sugarcane (Saccharum spp.) plants, consisting of green leaves, bundle sheath and variable proportions of immature cane.
16	LEAVES	Leaves from natural, uncultivated vegetation found in trees, forest, lanes etc.
17	FDDRBEET	Fodder beet (Beta vulgaris), also known as mangel beet or field beet, used as animal feed.
Cereals		
18	GRAINS	Grains from barley (Hordeum vulgare), oat (Avena sativa), buckwheat (Fagopyrum esculentum) and fonio (Digitaria spp.).
19	CORN	Grains from maize (Zea mays) plant.
By-produc	ts	
20	MLSOY	By-product from soy (<i>Glycine max</i>) oil production, commonly referred to as 'soy cakes' or 'soybean meal'.
21	MLRAPE	By-product from rape (<i>Brassica napus</i>) oil production, commonly referred to as 'rape cakes' or 'rapeseed meal'.
22	MLCTTN	By-product from cottonseed (Gossypium spp.) oil production, commonly referred to as 'cottonseed meal'.
23	PKEXP	By-products from the production of kernel palm oil (<i>Elaeis guineensis</i>), commonly referred to as 'kernel cake'.
24	MZGLTM	By-product from maize processing. It is a protein-rich feed, with about 65% crude protein content.
25	MZGLTF	By-product from maize processing. Unlike the gluten meal, its protein content is lower, of about 25% crude protein content.
26	BPULP	Also known as 'beet pulp', is the remaining material after the juice extraction for sugar production from the sugar beet (<i>Beta vulgaris</i>).
27	MOLASSES	By-product from the sugarcane sugar extraction.
28	GRNBYDRY	'Dry' by-products of grain industries such as brans, middlings, etc.
29	GRNBYWET	'Wet' by-products of grain industries such as biofuels, distilleries, breweries, etc.
Concentra	ites	
30	CONC	Concentrate feed from feed mills.
	30	

TABLE 3.3. Feeding groups for ruminant species

Animal category GLEAM cohorts				
Cattle and Buffaloes				
Group 1	AF			
Group 2	AM, RF, RM			
Group 3	MF, MM			
Group f MFf, MMf (applies to feedlot animals only)				
Small ruminants				
Group 1	AF			
Group 2	AM, RF, RM			
Group 3	MF, MM			

Figure 3.1 Representation of a hypothetical example of feed ration estimation for ruminant species in industrialized countries

¹ Specific by country and feeding group

² Specific by continent and species

Figure 3.2 Representation of a hypothetical example of feed ration estimation for cattle in developing countries

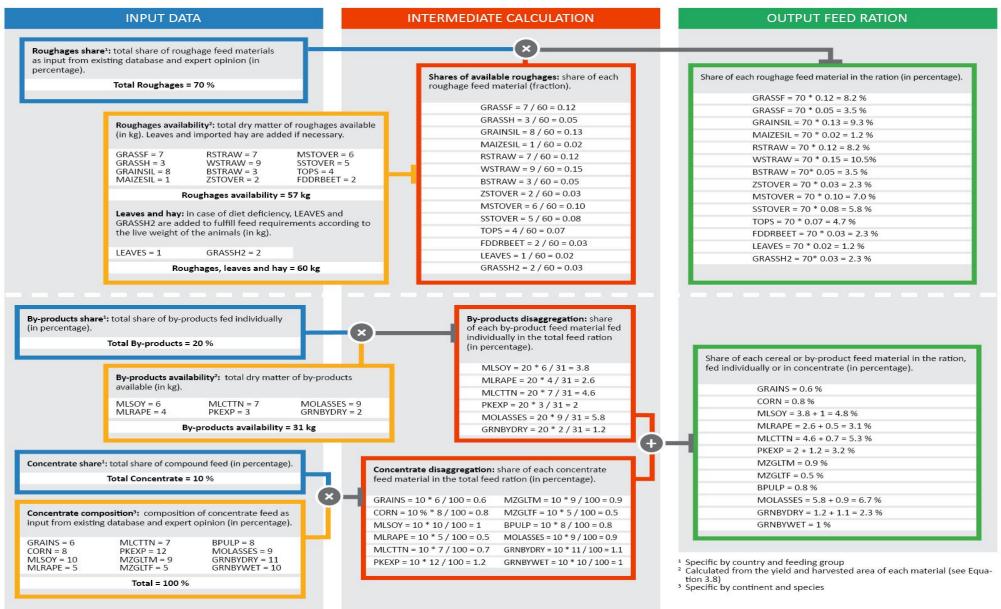
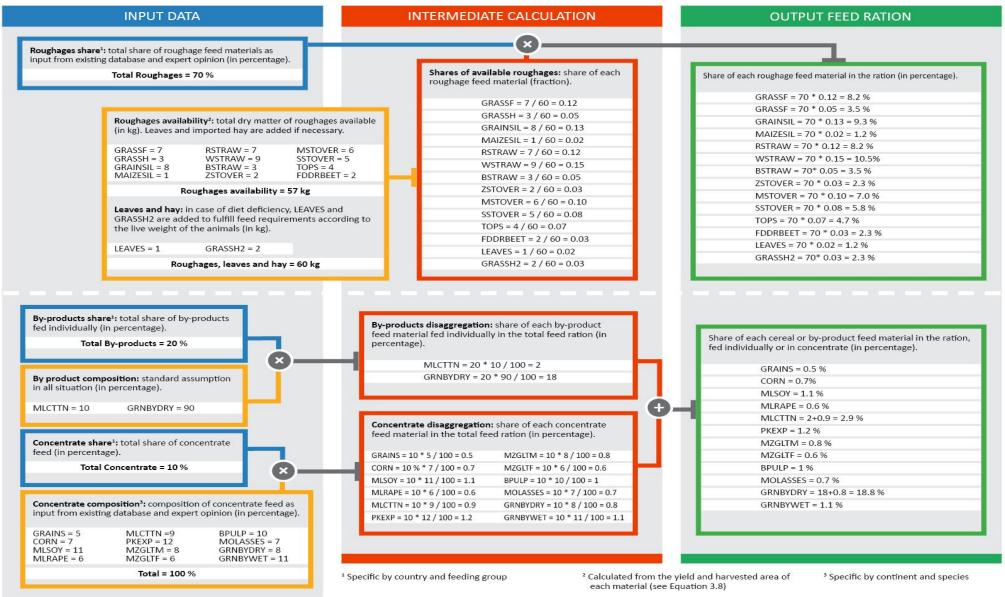



Figure 3.3 Representation of a hypothetical example of feed ration estimation for buffaloes and small ruminants in developing countries

3.2.1 - Calculation of the net dry matter yields

The net dry matter yield of each feed material in a given area defines the yield that is available as feed for the animals. For the purpose of estimating the animal ration it is used as a main input in those cases where the calculation of the local availability of feed is required, that is in the developing regions and, therefore, it is calculated only for the roughages and by-products (see Section 3.2.2).

In general, the gross dry matter yield (of the crop or crop residues, depending on the feed material; Equation 3.2) is corrected by the Feed Use Efficiency (FUE), which is the fraction of the yield that is effectively ingested and used as feed by the animals. For silages produced by cereals, it is assumed that the total above-ground biomass production is used, so both the crop and crop residues yields must be considered. Moreover, for some feed materials, the yield of the respective parental crop is also multiplied by the Mass Fraction Allocation (MFA) factor of the material. The latter is a default factor accounting for the feed material mass as a fraction of the total mass of the crop.

Calculation are shown in Equation 3.3. Table 3.4 summarizes the specific equation and input used for each feed material for the calculation of the net dry matter yield.

Equation 3.3

 $DMYN_i = DMYG_i * FUE_i * MFA_i$

for i = 1, 7 to 15, 17, 20 to 23, 27, 28

Where:

DMYN_i = net dry matter yield of feed material i, kg DM·ha⁻¹

DMYG_i = crop gross dry matter yield for feed material *i*, kg DM·ha⁻¹. It can either be the yield of the crop, crop

residues or, for feed materials 7 and 8, the sum of both. See table 3.4

FUE_i = feed use efficiency for feed material i, i.e. fraction of the gross yield that is effectively used as feed,

fraction

MFA_i = mass fraction allocation of feed material *i*, i.e. feed material mass as a fraction of the total mass of the

crop, fraction. Values are given in Table 3. 4. It is not used for feed materials 9 to 15.

TABLE 3.4. Net yield equations, gross yields, FUE and MFA for each feed material for ruminant species

				i material for ruminant speci	
Number	Material	Gross dry matter yields	Net yield equation	FUE	MFA
Roughages					
1	GRASSF	Grass	Equation 3.3	Table 3.5 (Supplement S1) ^a	1
2	GRASSH	Grass	Same as GRASSF	Table 3.5 (Supplement S1) ^a	1
3	GRASSH2	Grass	Same as GRASSF	Table 3.5 (Supplement S1) ^a	1
4	GRASSLEGF	Grass	Same as GRASSF	Table 3.5 (Supplement S1) ^a	1
5	GRASSLEGH	Grass	Same as GRASSF	Table 3.5 (Supplement S1) ^a	1
6	ALFALFAH	Grass	Same as GRASSF	Table 3.5 (Supplement S1) ^a	1
7	GRAINSIL	Barley and other cereals ^b (crop + crop residues)	Equation 3.3	1	1
8	MAIZESIL	Maize (crop + crop residues)	Equation 3.3	1	1
9	RSTRAW	Rice (crop residues) – Equation 3.2	Equation 3.3	Table 3.5 (Supplement S1) ^a	Equation 6.10a ^c
10	WSTRAW	Wheat (crop residues) – Equation 3.2	Equation 3.3	Table 3.5 (Supplement S1) ^a	Equation 6.10a ^c
11	BSTRAW	Barley (crop residues) – Equation 3.2	Equation 3.3	Table 3.5 (Supplement S1) ^a	Equation 6.10a ^c
12	ZSTOVER	Maize (crop residues) – Equation 3.2	Equation 3.3	Table 3.5 (Supplement S1) ^a	Equation 6.10a ^c
13	MSTOVER	Millet (crop residues) – Equation 3.2	Equation 3.3	Table 3.5 (Supplement S1) ^a	Equation 6.10a ^c
14	SSTOVER	Sorghum (crop residues) – Equation 3.2	Equation 3.3	Table 3.5 (Supplement S1) ^a	Equation 6.10a ^c
15	TOPS	Sugarcane (crop residues) – Equation 3.2	Equation 3.3	Table 3.5 (Supplement S1) ^a	Equation 6.10a ^c
16	LEAVES	NA	NA	1	1
17	FDDRBEET	Sugar beet	Equation 3.3	1	1
Cereals					
18	GRAINS	Barley and other cereals ^b	NA	1	1
19	CORN	Maize	NA	1	1
By-product	s				
20	MLSOY	Soybean ^c	Equation 3.3	1	0.80
21	MLRAPE	Rapeseed	Equation 3.3	1	0.58
22	MLCTTN	Cotton	Equation 3.3	1	0.45
23	PKEXP	Oil palm fruit ^c	Equation 3.3	1	0.03
24	MZGLTM	Maize	NA	1	0.05
25	MZGLTF	Maize	NA	1	0.21
26	BPULP	Sugar beet	NA	1	0.19
27	MOLASSES	Sugarcane	Equation 3.3	1	0.13
28	GRNBYDRY	Grains average yield ^d	Equation 3.3	1	0.17
29	GRNBYWET	Barley	NA	1	1

 $[\]ensuremath{^{\text{a}}}$ For these feed materials the FUE is spatially explicit.

3.2.2 – Feed rations in industrialized countries

The feed ration in industrialized countries are taken from country national inventory reports, literature and targeted surveys. The share of each individual feed material is calculated using Equation 3.4.

Equation 3.4

 $\begin{aligned} \text{FEED}_{i,fg,T} &=& \text{FEEDIND}_{i,fg,T} \\ && \text{for } i = 1 \text{ to } 17 \end{aligned}$

 $FEED_{i,fg,T}$ = $FEEDIND_{i,fg,T} + CONC_{fg,T} * CF_{i,T}$

for i = 18 to 29

Where:

^b Average yield weighed by the hectares of harvested area of barley and other cereals, excluding wheat, maize, millet, sorghum and rice.

^c For these feed materials, the MFA is only used for the allocation of the emissions from feed production (see Chapter 6, Section 6.5) and is calculated with a specific equation.

^cTo account for the high level of international trade of these feed materials, average country specific yields were calculated as follows: the average national yield was used for net exporters; for all other countries, a global mean of the yields of all net exporters, weighted by the net export, was calculated and, in a second step, an average between this global yield and each national yield was calculated, weighted by the amount of imported and locally produced product in each country.

^d Average yield weighed by the hectares of harvested area of wheat, maize, barley, millet, sorghum, rice and other cereals.

FEED_{i,fg,T} = fraction of feed material i in the ration for feeding group fg, species and system T, fraction

FEEDIND_{i,fg,T} = share of a feed material i fed as a separate product in the ration of feeding group fg of species and

system T, fraction

 $CONC_{fg,T}$ = fraction of concentrates in the diet for the feeding group fg, species and system T, fraction

 $CF_{i,T}$ = fraction of feed material *i* in the composition of concentrate feed for species and system *T*, fraction

3.2.3 – Feed rations in developing countries

The ration in developing countries is based on the proportion of by-products and concentrates in the ration, which are defined through surveys, literature and expert knowledge, and the availability of roughages in a given cell.

3.2.3.1 – Proportion and availability of roughages

First, the total proportion of roughages in the diet for all ruminant species in a given area (Equation 3.5) is calculated based on the average 'by-products' and 'concentrate' fractions (Equations 3.6 and 3.7, respectively).

Equation 3.5

 $RFRAC_{avg,T} = 1 - (BY_{avg,T} + CONC_{avg,T})$

Where:

RFRAC $_{avg,T}$ = weighted average fraction of roughages in the diet for ruminant species T, fraction

BY_{avg,T} = weighted average fraction of by-products in the diet for species *T*, fraction. BY_{avg} is calculated in

Equation 3.6.

CONC_{avg,T} = weighted average fraction of concentrates in the diet for species *T*, fraction. CONC_{avg} is calculated in

Equation 3.7.

Equation 3.6

```
BY_{avg,T} = (BY_{1,T} * (AF_{T} * AFkg_{T}) \\ + BY_{2,T} * (RF_{T} * RFkg_{T} + RM_{T} * RMkg_{T} + AM_{T} * AMkg_{T}) \\ + BY_{3,T} * (MF_{T} * MFkg_{T} + MM_{T} * MMkg_{T})) \\ / (AF_{T} * AFkg_{T} + RF_{T} * RFkg_{T} + MF_{T} * MFkg_{T} + AM_{T} * AMkg_{T} + RM_{T} * RMkg_{T} + MM_{T} * MMkg_{T})
```

Where:

BY_{avg,T} = weighted average fraction of by-products in the diet for species *T*, fraction

BY_{1,T} = fraction of by-products in the diet for the feeding group 1, species and system T, fraction BY_{2,T} = fraction of by-products in the diet for the feeding group 2, species and system T, fraction BY_{3,T} = fraction of by-products in the diet for the feeding group 3, species and system T, fraction

AF_T, RF_T,... = animal numbers from the different cohorts as calculated in the herd module for species and system *T*,

heads-year-1

AFkg_T, RFkg_T,... = average live weights for animals within each cohort as calculated in the herd module for species and

system T, kg·head-1

The fraction of by-products for each feeding group (BY_1 , BY_2 and BY_3) are defined for each species and system based on literature reviews, expert opinion and surveys.

Equation 3.7

```
\begin{aligned} \text{CONC}_{\text{avg,T}} &= & \left( \text{CONC}_{1,T} * \left( \text{AF}_{T} * \text{AFkg}_{T} \right) \right. \\ &+ & \left. \text{CONC}_{2,T} * \left( \text{RF}_{T} * \text{RFkg}_{T} + \text{RM}_{T} * \text{RMkg}_{T} + \text{AM}_{T} * \text{AMkg}_{T} \right) \right. \\ &+ & \left. \text{CONC}_{3,T} * \left( \text{MF}_{T} * \text{MFkg}_{T} + \text{MM}_{T} * \text{MMkg}_{T} \right) \right) \\ &+ & \left. \left( \text{AF}_{T} * \text{AFkg}_{T} + \text{RF}_{T} * \text{RFkg}_{T} + \text{MF}_{T} * \text{MFkg}_{T} + \text{AM}_{T} * \text{AMkg}_{T} + \text{RM}_{T} * \text{RMkg}_{T} + \text{MM}_{T} * \text{MMkg}_{T} \right) \right. \end{aligned}
```

Where:

CONC_{avg,T} = weighted average fraction of concentrates in the diet for ruminant species *T*, fraction CONC_{1,T} = fraction of concentrates in the diet for the feeding group *1*, species and system *T*, fraction CONC_{2,T} = fraction of concentrates in the diet for the feeding group 2, species and system T, fraction CONC_{3,T} = fraction of concentrates in the diet for the feeding group 3, species and system T, fraction

AF_T, RF_T, ... = animal numbers from the different cohorts as calculated in the herd module for species and system *T*,

heads-year-1

AFkg_T, RFkg_T, ... = average live weights for animals within each cohort as calculated in the herd module for species and

system T, kg·head-1

The fraction of concentrate for each feeding group (CONC₁, CONC₂ and CONC₃) is defined for each species and system based on literature reviews, expert opinion and surveys.

Once the total proportion of roughages in the diet for a given cell is calculated, GLEAM estimates the total available dry matter of roughages from the total dry matter yields and harvested areas of pasture, fodder and crop residues (Equation 3.8).

Equation 3.8

RFEEDKG = $\sum_{i}(DMYN_{i} * Area_{i})$

for i = 1, 7 to 15, 17

Where:

RFEEDKG = total dry matter of roughages available per cell, kg DMYN_i = net dry matter yield of feed material i, kg·ha⁻¹

Area_i = harvested area of feed material *i*, ha i = feed material *i* from Table 3.2

In a following step, the available amount of roughages per cell is compared with the animal requirements in that same cell, in order to add leaves and hay in case of feed deficiency. Following IPCC guidelines, GLEAM assumes that daily feed intake, expressed in terms of dry matter, must be between 2 and 3% of live weight. Two conditions are defined based on this criterion and the fraction of roughages in the diet calculated in Equation 3.4: sufficient (when roughages are sufficient to sustain a ratio of daily feed intake to bodyweight equal or higher than 2%) and deficiency conditions (when roughages are only sufficient to sustain a ratio of daily feed intake to bodyweight below 2%).

Sufficiency conditions

RFEEDKG / LWTOT ≥ (0.02 * 365) * RFRAC_{avg,T}

Deficiency conditions

RFEEDKG / LWTOT < (0.02 * 365) * RFRAC_{avg,T}

Where:

RFEEDKG = total dry matter of roughages available per cell, kg

LWTOT = total live weight of ruminant species, kg. Calculated in Equation 3.9.

RFRAC_{avg,T} = weighted average fraction of roughages in the diet for ruminant species T, fraction

0.02 = daily intake as fraction of body weight.

Equation 3.9

LWTOT = $\sum_{T} [\sum_{c} (N_{T,c} * LW_{T,c})]$

Where:

LWTOT = total live weight of ruminant species, kg

 $N_{T,c}$ = number of animals of species T and cohort c, heads

 $LW_{T,c}$ = average live weights of animals of species T and cohort c, kg·heads⁻¹

In situations of deficiency, leaves and hay from adjacent areas are included in the ration in two subsequent steps (Equation 3.10). First, leaves are added to an equivalent of 0.3% of daily intake. Second, hay from adjacent areas is added until reaching the 2% bodyweight equivalent defined previously.

Equation 3.10

 $LEAVES_T = (0.003 * 365) * LWTOT$

IF $(RFEEDKG + LEAVES_T) / LWTOT > (0.02 * 365) * RFRAC_{avg,T}$

No extra material is needed and the ration is completed following step 5.

IF (RFEEDKG + LEAVES_T) / LWTOT < (0.02 * 365) * RFRAC_{avg,T}

Hay from adjacent areas is added as:

 $GRASSH2_T$ = LWTOT * ((0.02 * 365) * RFRAC_{avg,T} - ((RFEEDKG + LEAVES) / LWTOT))

Where:

LEAVES_T = total dry matter of 'leaves' available for species and system T, kg

 $GRASSH2_T$ = total dry matter of 'hay from adjacent areas' available for species and system T, kg

The final amount of available roughages is calculated as:

Equation 3.11

 $RFEEDKGFINAL_T = RFEEDKG + LEAVES_T + GRASSH2_T$

Where:

RFEEDKGFINAL_T = total dry matter of roughages available per cell for species and system T, kg

RFEEDKG = total dry matter available from roughages per cell, kg

LEAVES_T = total dry matter of 'leaves' available for species and system T, kg

 $GRASSH2_T$ = total dry matter of 'hay from adjacent areas' available for species and system T, kg

3.2.3.2 - Share of individual roughage feed materials

The estimation of individual shares of roughages in animal diets is accomplished in two steps. The first one (Equations 3.12 to 3.14) calculates the share of each roughage material in the total dry matter of roughages available for each species. The second step (Equation 3.15) determines the share of each material in relation to the overall diet.

The share of grass and the distinction between fresh grass and hay is done as follows:

Equation 3.12

 $GRASSfrac_T = DMYN_1 * Area_1 / RFEEDKGFINAL_T$

Where:

GRASSfrac_T = fraction of grass (both fresh and hay) in the total dry matter of roughages available per cell for species

and system T, fraction

DMYN₁ = net dry matter yield of 'grass', kg·ha⁻¹
Area₁ = grazed or harvested area of 'grass', ha

RFEEDKGFINAL_T = total dry matter of roughages available per cell for species and system T, kg

The fraction of grass is then divided between fresh and hay depending on the agro-ecological zone and the grazing time of animals as shown in Table 3.6. The share of 'Pasture' manure management system is used as proxy for the grazing time.

TABLE 3.6 Partitioning of grass fraction

TABLE 3.0 I dititioning of grass fraction	
Agro-ecological zone	Partitioning of grass
Arid and hyper-arid	Fresh grass: $FEEDfrac_{1,T}^a = GRASSfrac_T$
	Grass hay: FEEDfrac _{2,T} b = 0
Temperate and tropical highlands	Fresh grass: FEEDfrac _{1,T} = GRASSfrac _T * MMS _{pasture,T} / 100
	Grass hay: $FEEDfrac_{2,T} = GRASSfrac_{T} * (100 - MMS_{pasture,T}) / 100$
Humid Fresh grass: $FEEDfrac_{1,T} = GRASSfrac_{T}$	
	Grass hay: $FEEDfrac_{2,T} = 0$

^aFEEDfrac_{1,T} = fraction of fresh grass in the total dry matter of roughages available per cell for species and system T, fraction ^bFEEDfrac_{2,T} = fraction of hay grass in the total dry matter of roughages available per cell for species and system T, fraction

The share of imported hay and leaves is calculated in Equation 3.13 below:

Equation 3.13

FEEDfrac_{3,T} = $GRASSH2_T / RFEEDKGFINAL_T$ FEEDfrac_{16,T} = $LEAVES_T / RFEEDKGFINAL_T$

Where:

FEEDfrac_{3,T} = fraction of hay imported from adjacent areas in the total dry matter of roughages available per cell for

species and system T, fraction

FEEDfrac 16,T = fraction of leaves in the total dry matter of roughages available per cell for species and system T,

fraction

 $GRASSH2_T$ = total dry matter of 'hay from adjacent areas' available for species and system T, kg

LEAVES_T = total dry matter of 'leaves' available for species and system T, kg

RFEEDKGFINAL_T = total dry matter of roughages available per cell for species and system T, kg

For the rest of "Roughages", the fraction is calculated as shown in Equation 3.14.

Equation 3.14

FEEDfraci,T = DMYNi * Areai / RFEEDKGFINALT

for i = 7 to 15. 17

Where:

FEEDfrac_{i,T} = fraction of feed material *i* in the total dry matter of roughages available per cell for species and system

T, fraction

DMYN_i = net dry matter yield of feed material *i*, kg·ha⁻¹
Area_i = grazed and/or harvested area of feed material *i*, ha

RFEEDKGFINAL_T = total dry matter of roughages available per cell for species and system T, kg

i = feed material *i* from Table 3.2

The final step is to estimate the individual shares of roughage materials in the overall animal diet for each feeding group following Equation 3.15.

Equation 3.15

 $FEED_{i,fg,T} = FEEDfrac_{i,T} * (1 - (BY_{fg,T} + CONC_{fg,T}))$

for i = 1 to 17

Where:

FEED_{i,fg,T} = fraction of feed material i in the ration for feeding group fg, species and system T, fraction

FEEDfrac_{i,T} = fraction of feed material i in the total dry matter of roughages available per cell for species and system

T, fraction

 $BY_{fg,T}$ = fraction of by-products in the diet for the feeding group fg, species and system T, fraction $CONC_{fg,T}$ = fraction of concentrates in the diet for the feeding group fg, species and system T, fraction

i = feed material i from Table 3.2

3.2.3.3 – Share of individual by-product feed materials

The estimation of individual share of by-products is done by combining the available yields of feed materials and the data on the share of 'by-products' feed category.

Equation 3.16 - Cattle

BYFEEDKG = $\sum_{i}(DMYN_{i} * Area_{i})$

for i = 20, 21, 22, 23, 27, 28

 $FEED_{BY,i,fg,T}$ = $BY_{fg,T} * DMYN_i * Area_i / BYFEEDKG$

for i = 20, 21, 22, 23, 27, 28

Where:

BYFEEDKG = total dry matter of by-products available per cell, kg

DMYN_i = net dry matter yield of 'by-product' feed material *i*, kg·ha⁻¹

Area_i = harvested area of feed material *i*, ha

FEED_{BY,i,fg,T} = fraction of 'by-product' feed material *i* for feeding group fg, species and system T, fraction BY_{fg,T} = fraction of 'by-products' in the diet for the feeding group fg, species and system T, fraction

i = feed material i from Table 3.2

Equation 3.17 - Buffaloes and small ruminants

FEED_{BY,22,fg,T} = $BY_{fg,T} * 0.1$ FEED_{BY,28,fg,T} = $BY_{fg,T} * 0.9$

Where:

FEED_{BY,22,fg,T} = fraction 'cottonseed meal' for feeding group fg, species and system T, fraction

 $FEED_{BY,28,fg,T}$ = fraction 'dry by-products of grain industries' for feeding group fg, species and system T, fraction

 $BY_{fg,T}$ = fraction of by-products in the diet for the feeding group fg, species and system T, fraction

3.2.3.4 – Share of individual concentrate feed materials

Concentrate feed consists of a number of by-products that can be fed as a separate product and as part of a mixed compound feed. The final step, in the estimation of animal diets, is the distribution of that concentrate among individual feed materials.

Equation 3.18

 $FEED_{i,fg,T}$ = $FEED_{i,fg,T}$

for i = 1 to 17

 $\mathsf{FEED}_{\mathsf{BY},\mathsf{i},\mathsf{fg},\mathsf{T}} \quad = \quad \mathsf{FEED}_{\mathsf{BY},\mathsf{i},\mathsf{fg},\mathsf{T}} + \mathsf{CONC}_{\mathsf{fg},\mathsf{T}} * \mathsf{CF}_{\mathsf{i},\mathsf{T}}$

for i = 18 to 29

Where:

FEED_{i,fg,T} = fraction of feed material i in the ration for feeding group fg, species and system T, fraction CONC_{fg,T} = fraction of concentrates in the diet for the feeding group fg, species and system T, fraction

 $CF_{i,T}$ = fraction of feed material *i* in the composition of concentrate feed for species and system *T*, fraction

FEED_{BY,i,fg,T} = fraction of 'by-product' feed material *i* for feeding group fg, species and system T, fraction

i = feed material *i* from Table 3.2

3.3 - MONOGASTRICS' FEED RATION

Feed materials for monogastric species are divided into three main categories:

- Swill and feed from scavenging: domestic (and commercial) food waste and feed from scavenging, used in backyard pig and chicken systems and, to a lesser extent, in some intermediate pig systems.
- Non-local feed materials: these are concentrate feed materials that are blended at a feed mill. The materials are sourced from various locations, and there is little link between the location where the feed material is produced and where it is utilized by the animal.
- Locally-produced feed materials: feed that are produced locally and used extensively in intermediate and backyard systems.

Non-local feed materials fall into four categories: **whole feed crops**, where there are no harvested crop residues; **by-products** from brewing, grain milling, processing of oilseeds and sugar production; **grains**, which have harvested crop-residues; and other **non-crop derived feed materials**.

The locally produced feed materials are more varied and, in addition to containing some of the crops, grains and by-products that are part of the non-local feeds, also include: **second-grade crops** deemed unfit for human consumption or use in concentrate feed; **crop residues**; and **forage** in the form of grass and leaves.

A complete list of the feed materials considered is shown in Table 3.14.

The proportions of swill, non-local feed and local feeds in the rations for each system and country are based on reported data and expert judgment.

One of the major differences between the local feeds and the non-local feeds is that the proportions of the individual local feed materials are not defined, but are based on what is available in the country/agro-ecological zone where the animals are located. The percentage of each feed material is determined by calculating the total yield of each of the crops within the country/AEZ, then assessing the fraction of that yield that is likely to be available as animal feed. The percentage of each feed material in the ration is then assumed to be equal to the proportion of the total available feed.

Finally, the total amount of local feed available is compared with the estimated local feed requirement within the cell. If the availability is below a defined threshold, small amounts of grass and leaves are added to supplement the ration.

For a schematic representation of the feed ration estimation for monogastric species see Figures 3.4 and 3.5.

TABLE 3.14. List of feed materials for monogastrics

TABLE 3.14.	List of feed mater	ials for monogastrics
Number	Material	Description
Swill and scav	enging/	
1	SWILL	Household food waste and other organic material used as feed.
Locally-produ	ced feed materials	
2	GRASSF	Any type of natural or cultivated fresh grass grazed or fed to the animals.
3	PULSES	Leguminous beans.
4	PSTRAW	Fibrous residual plant material such as straw, from leguminous plants cultivation.
5	CASSAVA	Pellets from cassava (Manihot esculenta) roots.
6	WHEAT	Grains from wheat (Triticum aestivum).
7	MAIZE	Grains from maize (Zea mays).
8	BARLEY	Grains from barley (Hordeum vulgare).
9	MILLET	Grains from millet (P. glaucum, E. coracana, P. miliaceum).
10	RICE	Grains from rice (<i>Oryza sp.</i>).
11	SORGHUM	Grains from sorghum (Sorghum sp.).
12	SOY	Beans from soy (Glicyne max).
13	TOPS	Fibrous residual plant material from sugarcane (Saccharum spp.) cultivation.
14	LEAVES	Leaves from natural, uncultivated vegetation found in trees, forest, lanes etc.
15	BNFRUIT	Fruit from banana trees (<i>Musa sp.</i>)
16	BNSTEM	Residual plant material such as stems from banana (<i>Musa sp.</i>) cultivation.
17	MLSOY	By-product from soy (<i>Glycine max</i>) oil production, commonly referred to as 'soy cakes' or 'soybean
		meal'.
18	MLCTTN	By-product from cottonseeds (<i>Gossypium sp</i>) oil production, commonly referred to as 'cottonseeds
		cakes'.
19	MLOILSDS	By-product (cakes, meals) from oil production other than soy, cottonseed or palm oil.
20	GRNBYDRY	'Dry' by-products of grain industries such as brans, middlings, etc.
Non-local fee		2.1 2) production of gramma decreases as a station, interacting of each
21	PULSES	Leguminous beans.
22	CASSAVA	Pellets from cassava (Manihot esculenta) roots.
23	WHEAT	Grains from wheat (<i>Triticum aestivum</i>).
24	MAIZE	Grains from maize (Zea mays).
25	BARLEY	Grains from barley (Hordeum vulgare).
26	MILLET	Grains from millet (<i>P. glaucum, E. coracana, P. miliaceum</i>).
27	RICE	Grains from rice (<i>Oryza sp.</i>).
28	SORGHUM	Grains from sorghum (Sorghum sp.).
29	SOY	Beans from soy (<i>Glicyne max</i>).
30	RAPESEED	Seeds from rape (B. napus).
31	SOYOIL	Oil extracted from soybeans (<i>Glicyne max</i>).
32	MLSOY	By-product from soy (<i>Glycine max</i>) oil production, commonly referred to as 'soy cakes' or 'soybean
32	IVILSOT	meal'.
33	MLCTTN	By-product from cottonseeds (<i>Gossypium sp</i>) oil production, commonly referred to as 'cottonseeds
	WESTIN	cakes'.
34	MLRAPE	By-products from rape oil production, commonly referred to as 'canola cakes'.
35	PKEXP	By-products from the production of kernel palm oil (Elaeis guineensis), commonly referred to as
		'kernel cake'.
36	MLOILSDS	By-product (cakes, meals) from oil production other than soy, cottonseed, rapeseed or palm oil.
37	FISHMEAL	By-products from the fish industries.
38	MOLASSES	By-product from the sugarcane sugar extraction.
39	GRNBYDRY	'Dry' by-products of grain industries such as brans, middlings, etc.
40	GRNBYWET	'Wet' by-products of grain industries such as biofuels, distilleries, breweries, etc.
41	SYNTHETIC	Synthetic additives such as amino-acids or minerals.
42	LIMESTONE	Used as source of calcium, is given to laying hens to favor the formation of the egg shell.
		I used extensively in intermediate and backvard systems. It is a more varied and complex group of feed materials

^a Feeds that are produced locally and used extensively in intermediate and backyard systems. It is a more varied and complex group of feed materials, including by-products, crop residues or forages.

^b Feed materials that are blended at a feed mill to produce concentrate feed. The materials are sourced from various locations and there is little link between the production site and location where are consumed by the animals.

Figure 3.4 Representation of a hypothetical example of feed ration estimation for pigs

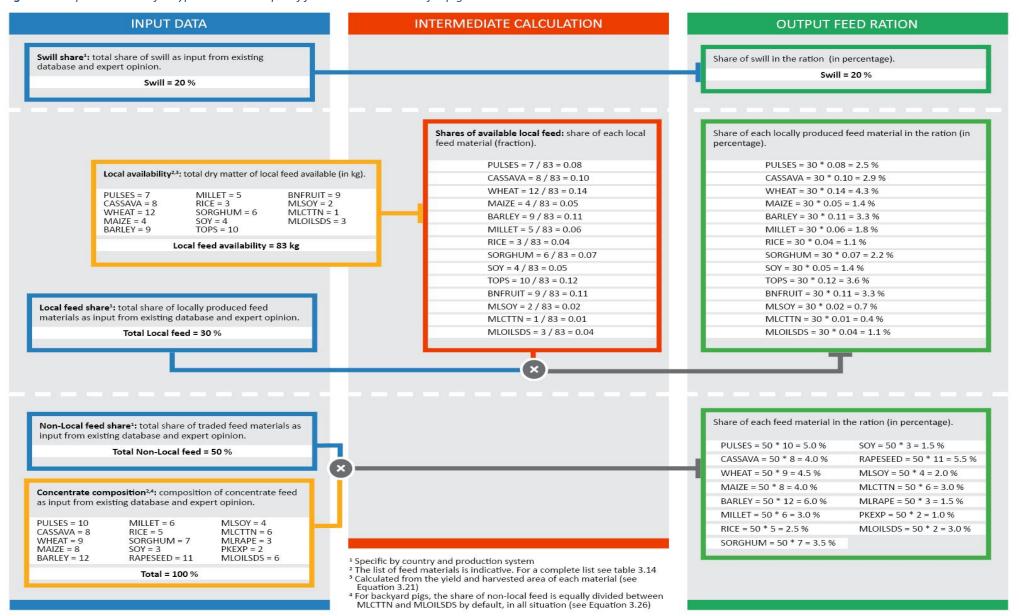
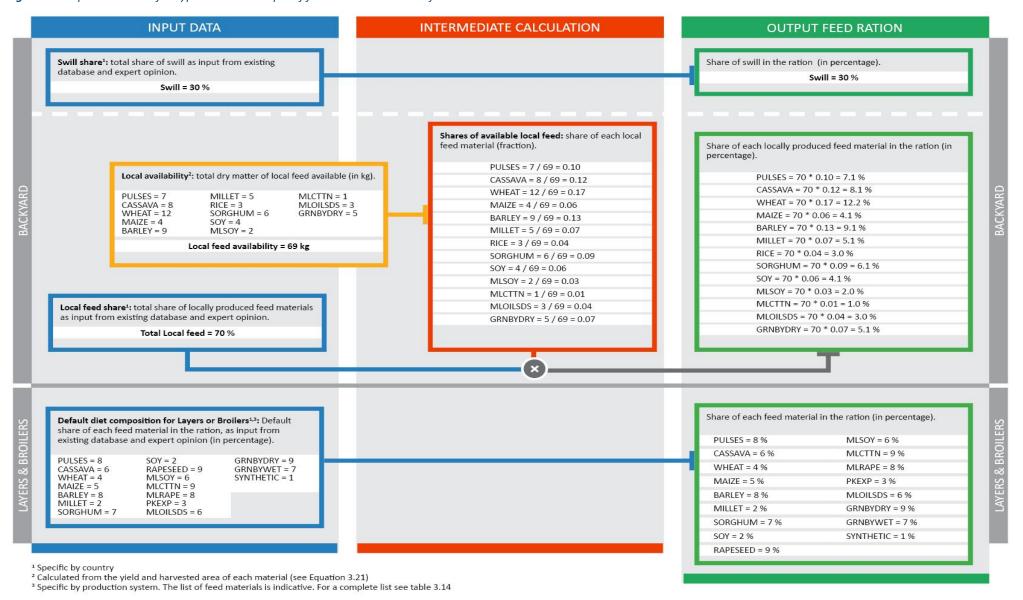



Figure 3.5 Representation of a hypothetical example of feed ration estimation for chickens

3.3.1 – Calculation of the net dry matter yields

The net dry matter yield of each feed material in a given area defines the yield that is available as feed for the animals. For the purpose of estimating the animal ration it is used as a main input in those cases where the calculation of the local availability of feed is required (see Sections 3.3.2 and 3.3.4), therefore it is calculated only for the local feed materials. The calculation of the net dry matter yield depends on the type of material considered. In general, the gross dry matter yield (of the crop or crop residues, depending on the feed material; Equation 3.2) is corrected by the FUE, which is the fraction of the yield that is effectively ingested and used as feed by the animals. Moreover, for some feed materials the yield of the respective parental crop is also multiplied by the MFA factor of the material. The latter is a default factor accounting for the feed material mass as a fraction of the total mass of the crop.

Calculation are shown in Equation 3.19. Table 3.15 summarizes the input used for each feed material, for the calculation of the net dry matter yield.

Equation 3.19

DMYN_i = DMYG_{,i} * FUE_i * MFA_i for i = 3 to 13, 15 to 20

Where:

DMYN_i = net dry matter yield of feed material i, kg DM·ha⁻¹

DMYG_{,i} = gross dry matter yield for feed material i, kg DM·ha⁻¹. It can either be the yield of the crop or crop

residues. See table 3.15.

FUE_i = feed use efficiency for feed material *i*, i.e. fraction of the gross yield that is effectively used as feed,

fraction

MFA_i = mass fraction allocation of feed material *i*, i.e. feed material mass as a fraction of the total mass of the

crop, fraction. Values are given in Table 3.15. It is not used for feed materials 3, 4, 6 to 11, 13, 15, 16.

TABLE 3.15. Net yield equations, gross yields, FUE and MFA for each feed material for monogastric species

		quations, gross yields, FUE and MFA for ea					
Number	Material	Gross dry matter yields	Net yield equation	FUE	MFA		
Swill and s	cavenging						
1	SWILL	NA ^a	NA	1	1		
Locally-pro	Locally-produced feed materials						
2	GRASSF	Grass	NA	0.95	1		
3	PULSES	Pulses	Equation 3.19	1	Equation 6.10bb		
4	PSTRAW	Pulses (crop residues) – Equation 3.2	Equation 3.19	0.90	Equation 6.10ab		
5	CASSAVA	Cassava	Equation 3.19	1	1		
6	WHEAT	Wheat	Equation 3.19	1	Equation 6.10bb		
7	MAIZE	Maize	Equation 3.19	1	Equation 6.10bb,c		
8	BARLEY	Barley	Equation 3.19	1	Equation 6.10bb		
9	MILLET	Millet	Equation 3.19	1	Equation 6.10bb		
10	RICE	Rice	Equation 3.19	1	Equation 6.10bb		
11	SORGHUM	Sorghum	Equation 3.19	1	Equation 6.10bb		
12	SOY	Soybean	Equation 3.19	1	1		
13	TOPS	Sugarcane (crop residues) – Equation 3.2	Equation 3.19	0.70	Equation 6.10ab		
14	LEAVES	NAª	NA	NA	NA		
15	BNFRUIT	Banana fruits	Equation 3.19	1	Equation 6.10bb		
16	BNSTEM	Banana fruits (crop residues) – Equation 3.2	Equation 3.19	0.50	Equation 6.10ab		
17	MLSOY	Soybean	Equation 3.19	1	0.80		
18	MLCTTN	Cotton	Equation 3.19	1	0.45		
19	MLOILSDS	Sunflower	Equation 3.19	1	0.60		
20	GRNBYDRY	Grains average yieldd	Equation 3.19	1	0.17		
Non-local f	eed materialsd			'			
21	PULSES	Pulses	NA	1	Equation 6.10bb		
22	CASSAVA	Cassava	NA	1	1		
23	WHEAT	Wheat	NA	1	Equation 6.10bb		
24	MAIZE	Maize	NA	1	1		
25	BARLEY	Barley	NA	1	Equation 6.10bb		
26	MILLET	Millet	NA	1	Equation 6.10bb		
27	RICE	Rice	NA	1	Equation 6.10bb		
28	SORGHUM	Sorghum	NA	1	Equation 6.10bb		
29	SOY	Soybean ^e	NA	1	1		
30	RAPESEED	Rapeseed	NA	1	1		
31	SOYOIL	Soybean	NA	1	0.17		
32	MLSOY	Soybean	NA	1	0.80		
33	MLCTTN	Cotton	NA	1	0.45		
34	MLRAPE	Rapeseed	NA	1	0.58		
35	PKEXP	Oil palm fruit ^e	NA	1	0.03		
36	MLOILSDS	Sunflower	NA	1	0.58		
37	FISHMEAL	NAª	NA	NA	NA		
38	MOLASSES	Sugarcane	NA	1	0.13		
39	GRNBYDRY	Grains average yieldf	NA	1	0.17		
40	GRNBYWET	Barley	NA	1	1		
41	SYNTHETIC	NA ^a	NA	NA	NA		
42	LIMESTONE	NA ^a	NA	NA	NA		
		I.	1	1 .	1		

a No yield is required for these feed materials: their share in the feed rations and their emission intensities are defined by default values.

^b For these feed materials, the MFA is only used for the allocation of the emissions from feed production (see Chapter 6, Section 6.5) and is calculated with a specific equation.

^c In industrialized countries, the MFA value of local MAIZE is assumed to be 1, because there is no use for the crop residues.

^dThese materials are sourced from various locations and there is little link between the production site and location where are consumed by the animals. For this reason, average yields, weighted by the harvested areas, were used at regional or, if necessary, continental level. Yields, FUE and MFA of these feed materials are used exclusively for the allocation of the emissions from feed production (see Chapter 6, Section 6.5).

^e To account for the high level of international trade of these feed materials, average country specific yields were calculated as follows: the average national yield was used for net exporters; for all other countries, a global mean of the yields of all net exporters, weighted by the net export, was calculated and, in a second step, an average between this global yield and each national yield was calculated, weighted by the amount of imported and locally produced product in each country.

^f Average yield weighed by the hectares of harvested area of wheat, maize, barley, millet, sorghum, rice and other cereals.

3.3.2 - Proportion of local feed materials

The first step is the calculation of the proportion of locally-produced feed materials as shown in Equation 3.20.

Equation 3.20

 $LOCALFRAC_T = 1 - (SWILLFRAC_T + NONLOCALFRAC_T)$

Where:

LOCALFRACT = fraction of locally-produced feed materials in the ration of species and system *T*, fraction

SWILLFRAC_T = fraction of swill in the ration of species and system T, fraction

NONLOCALFRAC_T = fraction of non-local feed materials in the ration of species and system T, fraction

SWILLFRAC_T and NONLOCALFRAC_T are defined base on literature surveys and expert opinion.

3.3.3 - Total locally-produced feed available

The estimation of available local feed is based on the yield and cultivated area of several crops as shown in Equation 3.21.

Equation 3.21

LOCALFEEDKG = \sum_{i} (DMYN_i * Frac_i * Area_i)

for i = 3-13, 15-20 (excluding 4, 13-16 for chickens)

Where:

LOCALFEEDKG = total dry matter of locally-produced feed materials per cell, kg

DMYN_i = net dry matter yield of feed material i, kg·ha⁻¹

Fraci = fraction of the yield of feed material *i* that is harvested to be used as feed, fraction. The following

default values are used: 0.1 for i = 3, 5 to 12; 0.5 for i = 4; 0.15 for i = 16; 1 for other feed materials.

Area_i = harvested area of feed material *i*, ha i = feed material *i* from Table 3.14

3.3.4 – Comparison with energy requirements and total intake of local feed materials

The total amount of local feed is compared with the animal requirements on an annual basis in the case of pigs. It is assumed that there is sufficient feed when the total available amount in a year represents 10 times the bodyweight.

Deficiency conditions

LOCALFEEDKG / LWTOT < 10

Sufficiency conditions

LOCALFEEDKG / LWTOT ≥ 10

Where:

LOCALFEEDKG = total dry matter of locally-produced feed materials per cell, kg

LWTOT = total monogastric species live weight depending on locally-produced feed, kg. It is calculated using

Equation 3.22.

Equation 3.22

LWTOT = $\sum_{T} [\sum_{c} (N_{T,c} * LW_{T,c}) * LOCALFRAC_{T}]$

Where:

LWTOT = total monogastric species live weight depending on locally-produced feed, kg

 $N_{T,c}$ = number of animals of species and system T and cohort c, heads

 $LW_{T,c}$ = average live weight of animals of species and system T and cohort c, kg·head⁻¹

 $LOCALFRAC_T$ = fraction of locally-produced feed materials in the ration of species and system T, fraction

In situations of deficiency, grass and leaves are added to the diet. Grass and leaves are added in amounts equivalents to the 10 and 15% of the total locally-produced dry matter.

Equation 3.23

GRASSF = 0.10 * LOCALFEEDKG LEAVES = 0.15 * LOCALFEEDKG

Where:

GRASSF = total dry matter of 'fresh grass' feed available for monogastric species' consumption, kg

LEAVES = total dry matter of 'leaves' feed available for monogastric species' consumption, kg

LOCALFEEDKG = total dry matter of locally-produced feed materials per cell, kg

Therefore, the final amount of local feed materials is calculated as:

Equation 3.24

For pigs:

LOCALFEEDKGFINAL = 1.25 * LOCALFEEDKG

For chickens:

LOCALFEEDKGFINAL = LOCALFEEDKG

Where:

LOCALFEEDKGFINAL = total dry matter of available locally-produced feed materials, kg

LOCALFEEDKG = total dry matter of locally-produced feed materials per cell, kg

3.3.5 - Individual share of local feed materials

The estimation of individual shares of local feeds is calculated as shown in Equation 3.25.

Equation 3.25

a. FEED_{i,T} = LOCALFRAC_T * GRASSF / LOCALFEEDKGFINAL

for i = 2 (only for pigs)

b. FEED_{i,T} = LOCALFRAC_T * LEAVES / LOCALFEEDKGFINAL

for i = 14 (only for pigs)

c. FEED_{i,T} = LOCALFRAC_T * (DMYN_i * Frac_i * Area_i) / LOCALFEEDKGFINAL

for i = 3 to 13, 15 to 20 (excluding 4, 13, 15, 16 for chickens)

Where:

FEED_{i,T} = fraction of feed material i in the ration of species and system T, fraction

LOCALFRAC_T = fraction of locally-produced feed materials in the ration of species and system *T*, fraction

GRASSF = total dry matter of 'fresh grass' feed available for monogastric species' consumption, kg

LEAVES = total dry matter of 'leaves' feed available for monogastric species' consumption, kg

DMYN_i = net dry matter yield of feed material i, kg·ha⁻¹

Frac_i = fraction of the yield of feed material *i* that is harvested to be used as feed, fraction. The following

default values are used: 0.1 for i = 3, 5 to 12; 0.5 for i = 4; 0.15 for i = 16; 1 for other feed materials.

Area_i = harvested area of feed material *i*, ha

LOCALFEEDKGFINAL = total dry matter of available locally-produced feed materials, kg

i = feed material *i* from Table 3.14

3.3.6 – Individual share of non-local feed materials

The individual share of non-local materials is calculated in different ways, depending on the particular species and production system. Tables 3.16 to 3.21 (Supplement S1) present average rations for monogastric species.

Pigs — Backyard systems

The fraction of non-local feed materials in the ration is equally shared between cottonseed cakes and oilseeds cakes.

Equation 3.26

FEED_i = NONLOCALfrac / 2

for i = 33, 36

Where:

FEED_i, = fraction of feed material i in the ration, fraction

NONLOCALFRAC = fraction of non-local feed materials in the ration, fraction

i = feed material i from Table 3.14

PIGS - INTERMEDIATE & INDUSTRIAL SYSTEMS

The non-local feed materials are fed to animals as part of a mixed concentrate feed. Data about the composition of concentrate feed for commercial pigs are based on literature, surveys and expert knowledge. The fraction of each non-local feed material in the total ration is calculated as follows.

Equation 3.27

 $FEED_{i,T}$ = NONLOCALFRAC_T * CF_i

for i = 21 to 42

Where:

FEED_{i,T,} = fraction of feed material i in the ration of system T, fraction

NONLOCALFRAC_T = fraction of non-local feed materials in the ration of system T, fraction CF_{i,T} = fraction of feed material i in the composition of concentrate feed, fraction

i = feed material i from Table 3.14

CHICKENS

It is assumed that non-local feed materials make no contribution of to the diet of backyard animals. Therefore, the final ration for that system is already defined in Equation 3.25.

Diets for layers and broiler systems are fully characterized based on literature reviews, national consultation and expert knowledge.

3.4 - NUTRITIONAL VALUES

Feed nutritional value in GLEAM are taken from several sources including FEEDEPEDIA, NRC guidelines for pigs and poultry and CVB tables from the Dutch feed board database (Tables 3.22 and 3.23; Supplement S1). Using nutritional information on feedstuffs, average values of digestibility, gross and metabolizable energy and nitrogen content are calculated for each species, production system and feeding group following Equation 3.28.

Equation 3.28

a. $DIET_{DI}$ = $\sum_{i}(FEED_{i} * DI_{i})$ b. $DIET_{GE}$ = $\sum_{i}(FEED_{i} * GE_{i})$ c. $DIET_{ME}$ = $\sum_{i}(FEED_{i} * ME_{i})$ d. $DIET_{Ncont}$ = $\sum_{i}(FEED_{i} * Ncont_{i})$

Where:

DIET_{DI} = average digestibility of ration, percentage

DIET_{GE} = average gross energy content of ration, MJ·kgDM⁻¹

DIET_{ME} = average metabolizable energy content of ration, MJ·kgDM⁻¹

DIET_{Ncont} = average nitrogen content of ration, gN·kg DM⁻¹

52

FEED_i = fraction of feed material *i* in the ration, fraction

DI_i = digestibility of feed material *i*, percentage

GE_i = gross energy content of feed material i, MJ·kgDM⁻¹

ME_i = metabolizable energy content of feed material *i*, MJ·kgDM⁻¹

Ncont_i = nitrogen content of feed material i, $gN \cdot kg DM^{-1}$

3.5 - ENERGY REQUIREMENTS

The gross energy requirement is the sum of the requirements for maintenance, milk production, pregnancy, animal activity, weight gain and production. The method estimates the energy requirement for maintenance as a function of live weight and the energy for activity as the energy expended in walking, grazing or scavenging. Energy requirement for production, instead, depends on the level of productivity (e.g. milk yield, live weight gain, fibre production, egg production). Requirements can also be influenced by the physiological state (pregnancy), ambient temperature and the stage of maturity of the animal. Based on production and management practices, the net energy and feed requirements of all animals are calculated. Data from the herd module (i.e. the number of animals in each category, their average weights, growth rates, fertility rates and yields) were combined with input data on: egg weight, protein/fat fraction of the milk, ambient temperature, and activity levels.

For schematic representation of the energy requirement and feed intake calculation, see Figures 3.6 and 3.7.

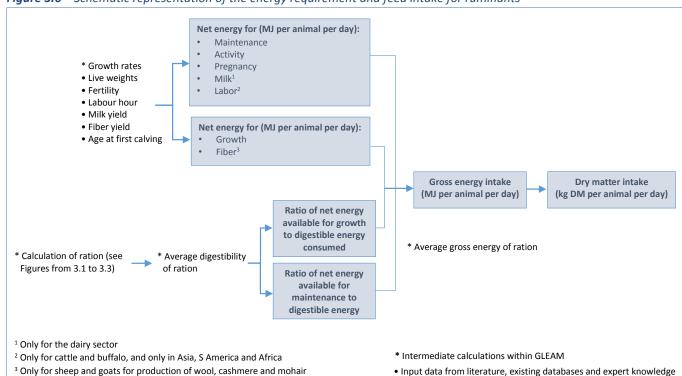
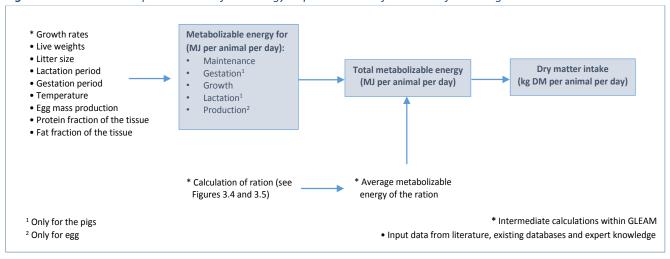



Figure 3.6 – Schematic representation of the energy requirement and feed intake for ruminants

Figure 3.7 – Schematic representation of the energy requirement and feed intake for monogastrics

3.5.1 - Energy requirement of ruminants

GLEAM uses the IPCC Tier 2 algorithms to calculate the energy requirements for each cohort (IPCC, 2006). Table 3.24 summarizes the equations used to estimate the daily gross energy (GE) needs:

TABLE 3.24. Equations used to estimate GE for ruminant species

Metabolic function	Abbreviation	Equations for large ruminants	Equations for small ruminants
Maintenance	NE _{main}	Equation 3.29	Equation 3.29
Activity	NE _{act}	Equation 3.30	Equation 3.31
Growth	NE _{gro}	Equation 3.32	Equation 3.33
Milk production	NE _{lact}	Equation 3.34	Equation 3.35
Draught power	NE _{work}	Equation 3.36	Not applicable
Production of fibre	NE _{fiber}	Not applicable	Equation 3.37
Pregnancy	NE _{preg}	Equation 3.38	Equation 3.39
Ratio of net energy available in diet for maintenance to	REM	Equation 3.40	Equation 3.40
digestible energy consumed			
Ratio of net energy available for growth in a diet to digestible	REG	Equation 3.41	Equation 3.41
energy consumed			
Daily gross energy	GE	Equation 3.42	Equation 3.42

3.5.1.1 – Net energy for maintenance (NE_{main})

NE_{main} is the net energy required for the maintenance of basal metabolic activity. It is estimated as follows:

Equation 3.29

 $NE_{main,c}$ = $C_{main,c} * LW_c^{0.75}$

Where:

 $NE_{main,c}$ = net energy required by animal for maintenance in cohort c, MJ·head⁻¹·day⁻¹

 $C_{main,c}$ = coefficient for NE_{main} for each cohort c, MJ·kg^{-0.75}·day⁻¹. Values are given in Table 3.25.

LW_c = average live weight of the animals in cohort c, kg·head⁻¹

TABLE 3.25. Coefficient for calculating NE_{main}

Animal category	GLEAM cohorts	C _{main} (MJ·kg ^{-0.75} ·day ⁻¹)
Cattle and Buffaloes, lactating cows	AF	0.386
Cattle and Buffaloes, non-lactating cows	RF, MF, MFf	0.322ª
Cattle and Buffaloes, bulls	RM, MM, MMf	0.370 ^a
Sheep and Goats, lamb/kid to 1 year	RFA, MF	0.236
Sheep and Goats, intact male lambs/kids to 1 year	RMA, MM	0.271
Sheep and Goats, older than 1 year	AF, RFB	0.217
Sheep and Goats, intact males older than 1 year	AM, RMB	0.250

 $^{^{}a}$ C_{main} of replacement animals is multiplied by 0.974. This prevents an overestimation of NE_{main} resulting from using the average live weight for the entire growing period instead of the average of live weights from each day.

3.5.1.2 – Net energy for activity (NE_{act})

NE_{act} is the net energy required for obtaining food, water and shelter based on the feeding situation and not directly related to the feed quality.

Equation 3.30 - Large ruminants

 $NE_{act,c}$ = $C_{act,c} * NE_{main,c}$

Where:

NE_{act,c} = net energy for animal activity in cohort c, MJ·head⁻¹·day⁻¹

C_{act,c} = coefficient for NE_{act} which depends on the animal feeding condition in cohort c, fraction. Values are

given in Table 3.26.

NE_{main,c} = net energy required by animal for maintenance in cohort *c*, MJ·head⁻¹·day⁻¹

Equation 3.31- Small ruminants

 $NE_{act,c}$ = $C_{act,c} * LW_c$

Where:

 $NE_{act,c}$ = net energy for animal activity in cohort c, $MJ \cdot head^{-1} \cdot day^{-1}$

 $C_{act,c}$ = coefficient for NE_{act} which depends on the animal feeding condition in cohort c, MJ·kg⁻¹·day⁻¹. Values are

given in Table 3.26.

 LW_c = average live weight of the animals in cohort c, kg·head⁻¹

TABLE 3.26. Activity coefficients for different feeding situations

Situation	Definition	Cact				
Cattle and Buffaloes (fraction)						
Stall	Animals are confined to small area with the result of little to none energy expenditure	0.00				
Pasture	Animals are confined in areas with sufficient forage requiring modest energy expense to acquire feed	0.17ª				
Grazing in large areas	Animals graze in open range land or hilly terrain and expend significant energy to acquire feed	0.36ª				
Sheep and Goats (MJ·kg-1·d	Sheep and Goats (MJ·kg ⁻¹ ·day ⁻¹)					
Housed ewes/does	Animals are confined due to pregnancy in the final trimester (50 days)	0.0090				
Grazing flat pasture	Animals walk up to 1000 meters per day and expend very little energy to acquire feed	0.0107 ^a				
Grazing hilly pasture	Animals walk up to 5000 meters per day and expend significant energy to acquire feed	0.0240a				

^a In order to reflect the proportion of animals grazing, C_{act} is multiplied by the share of Pasture/Range/Paddock manure management system (MMSpasture / 100).

3.5.1.3 – Net energy for growth (NE_{gro})

NE_{gro} is the net energy required for growth, that is, for gaining weight. These equations are applied to replacement and fattening animals (both in feedlots and outside feedlots).

Equation 3.32 – Large ruminants

 $\begin{array}{lll} a. \ NE_{gro,c} & = & 22.02 * (LW_c \ / \ C_{gro} * \ AFkg)^{0.75} * DWGF^{1.097} \\ b. \ NE_{gro,cm} & = & 22.02 * (LW_{cm} \ / \ C_{gro} * \ AMkg)^{0.75} * DWGM^{1.097} \\ c. \ NE_{gro,MFf} & = & 22.02 * (MFfkg \ / \ C_{gro} * \ LWENDF)^{0.75} * DWGFF^{1.097} \\ d. \ NE_{gro,MMf} & = & 22.02 * (MMfkg \ / \ C_{gro} * \ LWENDM)^{0.75} * DWGFM^{1.097} \\ \end{array}$

Where:

 NE_{gro} = net energy required by animal for growth in cohort c, MJ·head⁻¹·day⁻¹

LW = average live weight of growing animals, kg·head⁻¹ C_{gro} = dimensionless coefficient given in Table 3.27

AFkg = average live weight of adult female animals, kg·head⁻¹
AMkg = average live weight of adult male animals, kg·head⁻¹

DWGF = average daily growth rate of female animals from calf to adult animal, kg·head⁻¹·day⁻¹

DWGM = average daily growth rate of male animals from calf to adult animal, kg·head⁻¹·day⁻¹

DWGFF = average daily growth rate of female animals in feedlots, kg·head⁻¹·day⁻¹

DWGMF = average daily growth rate of male animals in feedlots, kg·head⁻¹·day⁻¹

cf = cohorts of replacement (RF) or fattening female animals (MF) cm = cohorts of replacement (RM) or fattening male animals (MM)

MFf = cohort of feedlot female animals

MMf = cohort of feedlot male animals

TABLE 3.27. Constants for calculating NE_{gro}

Animal category	GLEAM cohorts	C (dimensionless)
Cattle and Buffaloes		
Female animals	RF, MF, MFf	0.8
Male animals	RM	1.2
ividie dililiais	MM, MMf	1.0

Equation 3.33 - Small ruminants

 $NE_{gro,c}$ = $DWG_c * (a_c + b_c * Ckg) + 0.5 * b_c * DWG_c^2$

Where:

 $NE_{gro,c}$ = net energy required by animal for growth in cohort c, MJ·head⁻¹·day⁻¹

DWG_c = average daily weight gain in cohort c, kg·head⁻¹·day⁻¹

ac, bc
 c constants given in Table 3.28 for cohort c
 live weight of lambs/kids at birth, kg·head⁻¹
 c cohort of replacement or fattening animals

TABLE 3.28. Constants for calculating NEgro

Animal category	GLEAM cohorts	a (MJ·kg⁻¹)	b (MJ·kg ⁻²)
Sheep and Goats			
Females	RF, RFA, RFB, MF	2.1	0.45
Intact males	RM, RMA, RMB, MM	2.5	0.35

3.5.1.4 – Net energy for milk production (NE_{lact})

NE_{lact} is the net energy required for milk production. These equations are applied to adult females only.

Equation 3.34 - Large ruminants

 $NE_{lact,AF}$ = Milk * (1.47 * 0.40 * Fat)

Where:

NE_{lact,AF} = net energy required by animal for lactation in the adult females cohort *AF*, MJ·head⁻¹·day⁻¹

Milk = daily milk production (assumed to be null for the specialized meat herds), kg milk·cow⁻¹·day⁻¹

Fat = fat content of milk, percentage by weight

Equation 3.35 - Small ruminants

 $NE_{lact,AF}$ = $Milk * EV_{milk}$

Where:

NE_{lact,AF} = net energy required by animal for lactation in the adult females cohort AF, MJ·head⁻¹·day⁻¹

Milk = daily milk production (assumed to be null for the specialized meat herds), kg milk·ewe/doe⁻¹·day⁻¹

EV_{milk} = net energy to produce 1 kg of milk. Default value of 4.6 MJ·kg milk⁻¹ is used, assuming a 7% fat content

3.5.1.5 – Net energy for draught power (NE_{work})

NE_{work} is the net energy required for animal work, used to estimate the energy required for draught power from cattle and buffalo bulls. It is estimated that 10% of a day's maintenance energy is used per hour of work.

Equation 3.36

NEwork,AM = 0.10 * NEmain,AM * Hours

Where:

NE_{work,AM} = net energy required by animal for work in the adult males cohort *AM*, MJ·head⁻¹·day⁻¹

NE_{main, AM} = net energy required by animal for maintenance in the adult males cohort *AM*, MJ·head⁻¹·day⁻¹

Hours = number of hours of work per day, h·head⁻¹·day⁻¹

3.5.1.6 – Net energy for production of fibre (NEfibre)

NE_{fibre} is the net energy required by small ruminants for producing fibre such as wool, cashmere and mohair. These equations are applied to adult and fattening animals.

Equation 3.37

 $NE_{fibre,c}$ = EV_{fibre} * Production_{fibre}

Where:

NE_{fibre,c} = net energy required by animal for fibre production in cohort *c*, MJ·animal⁻¹·day⁻¹ EV_{fibre} = energy value per kilogram of fibre. Default value of 24 MJ·kg fibre⁻¹ is used

Production_{fibre} = annual production of fibre, kg fibre·head⁻¹·year⁻¹

c = cohorts of adult and fattening animals

3.5.1.7 – Net energy for pregnancy (NE_{preg})

NE_{preg} is the net energy required for pregnancy. For large ruminants, it is estimated that 10% of NE_{main} is needed for a 281-day gestation period (Equation 3.38). For small ruminants, this percentage varies depending on the litter size (Equation 3.39). The equation is applied to adult and replacement females only.

Equation 3.38 - Large ruminants

a. $NE_{preg,AF}$ = $NE_{main,AF} * 0.1 * FR / 100$ b. $NE_{preg,RF}$ = $NE_{main,RF} * 0.1 * AFC / 2$

Where:

NE_{preg,AF} = net energy required by adult females for pregnancy, MJ·head⁻¹·day⁻¹

NE_{preg,RF} = net energy required by replacement females for pregnancy, MJ·head⁻¹·day⁻¹

NE_{main,AF} = net energy required by adult females for maintenance, MJ·head⁻¹·day⁻¹

NE_{main,RF} = net energy required by replacement females for maintenance, MJ·head⁻¹·day⁻¹

FR = fertility rate of adult females, percentage

AFC = age at first calving, year

Equation 3.39 - Small ruminants

a. $NE_{preg,AF}$ = $NE_{main,AF} * (0.077 * (2 - LITSIZE) + 0.126 * (LITSIZE - 1)) * (365 * FR / LINT)$

b. $NE_{preg,RF}$ = $NE_{main,RF} * 0.077$

Where:

NE_{preg,AF} = net energy required by adult females for pregnancy, MJ·head⁻¹·day⁻¹

NE_{preg,RF} = net energy required by replacement females for pregnancy, MJ·head⁻¹·day⁻¹

NE_{main,AF} = net energy required by adult females for maintenance, MJ·head⁻¹·day⁻¹

NE_{main,RF} = net energy required by replacement females for maintenance, MJ·head⁻¹·day⁻¹

LITSIZE = litter size, number of lambs/kids per parturition, head

LINT = lambing or kidding interval, period between two parturitions, days

FR = fertility rate of adult females, percentage

AFC = age at first calving, year

3.5.1.8 - Ratio of net energy in the feed intake for maintenance to digestible energy (REM)

The ratio of net energy available in the feed intake for maintenance to digestible energy consumed (REM) for ruminant species is calculated following Equation 3.40 below:

Equation 3.40

 $\mathsf{REM}_{\mathsf{fg}} \qquad \qquad = \quad 1.123 - (4.092 \cdot 10^{-3} * \mathsf{DIET}_{\mathsf{DI},\mathsf{fg}}) + (1.126 \cdot 10^{-5} * \mathsf{DIET}_{\mathsf{DI},\mathsf{fg}}^{2}) - (25.4 \, / \, \mathsf{DIET}_{\mathsf{DI},\mathsf{fg}})$

Where:

 REM_{fg} = ratio of net energy available in the diet for maintenance to digestible energy for the feeding group fg,

fraction

 $DIET_{DI,fg}$ = average digestibility of ration for the feeding group fg, percentage

fg = feeding group as shown in Table 3.3

3.5.1.9 – Ratio of net energy available in the feed intake for growth to digestible energy consumed (REG)

The ratio of net energy available in the feed intake for growth to digestible energy consumed (REG) for ruminant species is calculated following Equation 3.41below:

Equation 3.41

REG_{fg} = $1.164 - (5.160 \cdot 10^{-3} * DIET_{DI,fg}) + (1.308 \cdot 10^{-5} * DIET_{DI,fg}^{2}) - (37.4 / DIET_{DI,fg})$

Where:

REG_{fg} = ratio of net energy available in the diet for growth to digestible energy consumed for the feeding group

fg, fraction

DIET_{DI,fg} = average digestibility of ration for the feeding group fq, percentage

fg = feeding group as shown in Table 3.3

3.5.1.10 – Total gross energy (GE)

The gross energy requirement is based on the amount of net energy requirements and the energy availability of the feed intake as showed in the equation below, using the relevant terms for each species and animal category:

Equation 3.42

 $\mathsf{GE}_{\mathsf{tot},\mathsf{c}} = \left(\left(\left(\mathsf{NE}_{\mathsf{main},\mathsf{c}} + \mathsf{NE}_{\mathsf{act},\mathsf{c}} + \mathsf{NE}_{\mathsf{lact},\mathsf{c}} + \mathsf{NE}_{\mathsf{preg},\mathsf{c}} \right) / \mathsf{REM}_{\mathsf{fg}} \right) + \left(\left(\mathsf{NE}_{\mathsf{gro},\mathsf{c}} + \mathsf{NE}_{\mathsf{fibre},\mathsf{c}} \right) / \mathsf{REG}_{\mathsf{fg}} \right) \right) / \left(\mathsf{DIET}_{\mathsf{DI},\mathsf{fg}} / 100 \right)$

Where:

GE_{tot,c} = total gross energy requirement by animal in cohort *c*, MJ·head⁻¹·day⁻¹

NE_{main,c} = net energy required by animal for maintenance in cohort *c*, MJ·head⁻¹·day⁻¹

 $NE_{act,c}$ = net energy for animal activity in cohort c, $MJ \cdot head^{-1} \cdot day^{-1}$

NE_{gro,c} = net energy required by animal for growth in cohort c, MJ·head⁻¹·day⁻¹ NE_{lact,c} = net energy required by animal for lactation in cohort c, MJ·head⁻¹·day⁻¹ NE_{work,c} = net energy required by animal for work in cohort c, MJ·head⁻¹·day⁻¹

NE_{fibre,c} = net energy required by animal for fibre production in cohort *c*, MJ·head⁻¹·day⁻¹

NE_{preg,c} = net energy required by animal for pregnancy in cohort *c*, MJ·head⁻¹·day⁻¹

REM_{fg} = ratio of net energy available in the diet for maintenance to digestible energy consumed for the feeding

group fg, fraction

REG_{fg} = ratio of net energy available in the diet for growth to digestible energy consumed for the feeding group

fg, fraction

fg = feeding group as shown in Table 3.3

3.5.2 - Energy requirement of pigs

As the 2006 IPCC guidelines do not include equations for calculating the energy requirement of monogastric species, equations for pigs were derived from NRC (1998). The formulas were adjusted in light of recent farm data supplied by Bikker (personal communication 2011). The model distinguishes four groups with respect their nutrition needs: sows, boars, replacement animals and fattening pigs. The table below summarizes the equations used to estimate the energy requirements for pigs:

TABLE 3.29. Equations used to estimate ME for pigs

Metabolic function	Abbreviation	Equation
Maintenance	ME _{main}	Equation 3.43
Gestation	ME _{gest}	Equation 3.44
Lactation	ME _{lact}	Equation 3.45
Growth	ME _{prot} / ME _{fat}	Equation 3.46/3.47
Total energy requirement		
Adult females (AF)	ME _{tot}	Equation 3.48a
Adult males (AM)	ME _{tot}	Equation 3.48b
Replacement females (RF)	ME _{tot}	Equation 3.48c
Replacement males (RM)	ME _{tot}	Equation 3.48d
Fattening animals (M2)	ME _{tot}	Equation 3.48e

3.5.2.1 – Energy requirement for maintenance (ME_{main})

ME_{main} is the metabolizable energy requirement for maintenance.

Equation 3.43

 $ME_{main,c} = C_{main} * LW_c^{0.75} * C_{act}$

Where:

 $ME_{main,c}$ = metabolizable energy required by animal for maintenance in cohort c, $MJ \cdot head^{-1} \cdot day^{-1}$

C_{main} = coefficient for maintenance energy requirement, MJ·kg^{-0.75}·day⁻¹. Default value of 0.444 is used

 LW_c = average live weight for maintenance energy requirement of the animals in cohort c, $kg \cdot head^{-1}$. Values

are given in Table 3.30

C_{act} = dimensionless coefficient for activity that depends on animal feeding condition, with 1.125 for backyard

and 1.000 for intermediate and industrial systems

TABLE 3.30. Average live weight for maintenance energy requirements for pigs

Animal cohort	Weight (kg-animal ⁻¹)
Adult females (idle)	AFkg
Adult females (gestation)	AFkg + (LITSIZE * Ckg + 0.15 * AFkg) / 2
Adult females (lactation)	(AFkg + 0.15 * AFkg) / 2
Adult males	AMkg
Replacement females	RFkg
Replacement males	RMkg
Fattening animals	M2kg

Where:

LITSIZE = litter size, number of lambs/kids per parturition, head

Ckg = live weight of piglets at birth, kg·head-1

AFkg = average live weight of adult females, kg·head-1

AMkg = average live weight of adult males, kg·head-1

RFkg = average live weight of replacement females, kg \cdot head $^{\text{-}1}$

RMkg = average live weight of replacement males, kg·head-1

M2kg = average live weight of meat animals, kg \cdot head $^{-1}$

3.5.2.2 – Energy requirement for gestation (ME_{gest})

ME_{gest} is the metabolizable energy requirement for gestation. This equation is applied only to adult and replacement females. In the second case, only a part of the animals is at reproductive age. Therefore, the energy requirement for this cohort must be corrected by the age at first farrowing of the animals.

Equation 3.44

 $ME_{gest,c}$ = $C_{gest} * LITSIZE * C_{adj,c}$

Where:

ME_{gest} = metabolizable energy required by animal for gestation in cohort *c*, MJ·head⁻¹·day⁻¹

C_{gest} = coefficient for gestation energy requirement, MJ·piglet⁻¹. Default value of 0.148 is used

LITSIZE = litter size, number of lambs/kids per parturition, head

C_{adj,c} = coefficient of adjustment to account for the reproductive part of the cohort c, year. A value of 1 is used

for adult females and a value of 1 / AFCF is used for replacement females (AFCF is the age at parturition

based on the daily weight gain, see section 2.3.2.1).

c = cohort of adult or replacement females

3.5.2.3 – Energy requirement for lactation (ME_{lact})

ME_{lact} is the metabolizable energy requirement for lactation. This equation is applied only to adult and replacement females. In the second case, only a part of the animals is at reproductive age. Therefore, the energy requirement for this cohort must be corrected by the age at first farrowing of the animals.

Equation 3.45

 $ME_{lact,c}$ = LITSIZE *((1 - 0.5 * (DR1 / 100)) * (C_{lact} * (Wkg - Ckg) * 1000 / Lact) - (C_{wloss} / C_{conv})) * $C_{adj,c}$

Where:

 $ME_{lact,c}$ = metabolizable energy required by animal for lactation in cohort c, MJ·head⁻¹·day⁻¹

LITSIZE = litter size, number of lambs/kids per parturition, head

DR1 = death rate of piglets, percentage

C_{lact} = coefficient for lactation energy requirement, MJ·g live weight⁻¹. Default value of 20.59 is used.

Wkg = live weight of piglets at weaning age, kg·head⁻¹

Ckg = live weight of piglets at birth, kg·head⁻¹
Lact = duration of lactation period, days

C_{wloss} = coefficient for weight loss from sow due to lactation, MJ·head⁻¹·day⁻¹¹. Default value of 0.38 is used.

C_{conv} = efficiency for intake to milk energy conversion, fraction. Default value of 0.67 is used.

C_{adj,c} = coefficient of adjustment to account for the reproductive part of the cohort c, year. A value of 1 is used

for adult females and a value of 1 / AFCF is used for replacement females (AFCF is the age at parturition

based on the daily weight gain, see section 2.3.2.1).

c = cohort of adult or replacement females

3.5.2.4 – Energy requirement for growth (ME_{prot} and ME_{fat})

 ME_{prot} and ME_{fat} are the metabolizable energy requirements for the generation, during growth, of proteins and fat , respectively. It is assumed that all growth is either fat or protein tissue. These equations are applied only to replacement and fattening animals.

Equation 3.46

 $ME_{prot,c}$ = DWG_c * PTissue * Prot * C_{MEprot}

Where:

 $ME_{prot,c}$ = metabolizable energy required for generating new protein in tissues for cohort c, $MJ \cdot head^{-1} \cdot day^{-1}$

DWG_c = daily weight gain by animal in cohort c, kg·head⁻¹·day⁻¹

PTissue = fraction of protein tissue in the daily weight gain, fraction. Default values of 0.60, 0.65 and 0.7 for

backyard, intermediate and industrial systems are used, respectively.

Prot = fraction of protein in protein tissue, fraction. Default value of 0.23 is used

C_{MEprot} = metabolizable energy required for protein in protein tissue, MJ·kg protein⁻¹. Default value of 54.0 is

used.

c = cohort of replacement and fattening animals

Equation 3.47

 $ME_{fat,c}$ = DWG_c * (1 - PTissue) * Fat * C_{MEfat}

Where:

 $ME_{fat,c}$ = metabolizable energy required for generating new fat in adipose tissue for cohort c, $MJ \cdot head^{-1} \cdot day^{-1}$

DWG_c = daily weight gain by animal in cohort c, kg·head⁻¹·day⁻¹

PTissue = fraction of protein tissue in the daily weight gain, fraction. Default values of 0.60, 0.65 and 0.7 for

backyard, intermediate and industrial systems are used, respectively.

Fat = fraction of fat in adipose tissue, fraction. Default value of 0.90 is used

C_{MEfat} = metabolizable energy required for fat in adipose tissue, MJ·kg fat⁻¹. Default value of 52.3 is used.

c = cohort of replacement and fattening animals

3.5.2.5 – Total energy requirement (ME_{tot})

MEtot is the total metabolizable energy requirement for each animal in a given cohort.

Equation 3.48

a. $ME_{tot,AF}$ = Gest * ($ME_{main-gestation,AF}$ + ME_{gest}) + Lact * ($ME_{main-lactation,AF}$ + ME_{lact}) + Idle * ($ME_{main-idle,AF}$)

b. $ME_{tot,AM}$ = $ME_{main,AM}$

c. $ME_{tot,RF}$ = Gest * ($ME_{gest,RF}$) + Lact * ($ME_{lact,RF}$) + 365 * AFC * ($ME_{main,RF}$ + $ME_{prot,RF}$ + $ME_{fat,RF}$)

 $\begin{aligned} &d. \ \mathsf{ME}_{\mathsf{tot},\mathsf{RM}} &= & \mathsf{ME}_{\mathsf{main},\mathsf{RM}} + \mathsf{ME}_{\mathsf{prot},\mathsf{RM}} + \mathsf{ME}_{\mathsf{fat},\mathsf{RM}} \\ &e. \ \mathsf{ME}_{\mathsf{tot},\mathsf{M2}} &= & \mathsf{ME}_{\mathsf{main},\mathsf{M2}} + \mathsf{ME}_{\mathsf{prot},\mathsf{M2}} + \mathsf{ME}_{\mathsf{fat},\mathsf{M2}} \end{aligned}$

Where:

ME_{tot} = total metabolizable energy required for a given cohort, MJ·head⁻¹·day⁻¹

ME_{main} = metabolizable energy required by animal for maintenance for a given cohort, MJ·head⁻¹·day⁻¹. For adult

females, the model distinguishes between idle, gestation and lactation periods (see Equation 3.43)

ME_{gest} = metabolizable energy required by animal for gestation for a given cohort, MJ·head⁻¹·day⁻¹

ME_{lact} = metabolizable energy required by animal for lactation for a given cohort, MJ·head⁻¹·day⁻¹

ME_{prot} = metabolizable energy required by animal for generation of new proteins in protein tissue for a given

cohort, MJ·head⁻¹·day⁻¹

ME_{fat} = metabolizable energy required by animal for generation of new fat in adipose tissue for a given cohort,

 $MJ{\cdot}head^{\text{-}1}{\cdot}day^{\text{-}1}$

Gest = duration of gestation period, days
Lact = duration of lactation period, days
Idle = duration of idle period, days
AFC = age at first parturition, year

3.5.3 - Energy requirement of chicken

Equations for chicken were derived from Sakomura (2004). The model partitions the total metabolizable energy intake into maintenance, growth and production. It is assumed that layers and broilers are kept in housing with a controlled environment where the ambient temperature is constant at 20 °C. For backyard systems, the average annual temperature is used in the estimation of energy for maintenance. Table 3.31 summarizes the equations used to estimate the energy requirements for chicken.

TABLE 3.31. Equations used to estimate ME for chickens

Metabolic function	Abbreviation	Equation	
Maintenance	ME _{main}	Equation 3.49	
Growth	ME _{gro}	Equation 3.50	
Production	ME _{prod}	Equation 3.51	
Total energy requirement			
Backyard production systems			
Reproductive hens	ME _{tot}	Equation 3.52a	
Reproductive roosters	ME _{tot}	Equation 3.52b	
Surplus hens when adults (laying eggs)	ME _{tot}	Equation 3.52a	
Growing female and male chicks for replacement	ME _{tot}	Equation 3.52b	
Surplus hens when growing (not laying eggs)	ME _{tot}	Equation 3.52b	
Surplus roosters	ME _{tot}	Equation 3.52b	
Layers production systems	·		
Reproductive hens	ME _{tot}	Equation 3.52a	
Reproductive roosters	ME _{tot}	Equation 3.52b	
Growing female and male chicks for replacement	ME _{tot}	Equation 3.52b	
Surplus roosters	ME _{tot}	Equation 3.52b	
Laying hens (before laying period and during molting period)	ME _{tot}	Equation 3.52b	
Laying hens (during laying period)	ME _{tot}	Equation 3.52a	
Broiler production system			
Reproductive hens	ME _{tot}	Equation 3.52a	
Reproductive roosters	ME _{tot}	Equation 3.52b	
Growing female and male chicks for replacement	ME _{tot}	Equation 3.52b	
Broiler animals	ME _{tot}	Equation 3.52b	

3.5.3.1 – Energy requirement for maintenance (ME_{main})

 $\ensuremath{\mathsf{ME}_{\mathsf{main}}}$ is the metabolizable energy requirement for maintenance.

Equation 3.49

 $ME_{main,c}$ = $LW_c^{0.75} * TEMPreg_c * C_{act}$

Where:

 $ME_{main,c}$ = metabolizable energy required by animal for maintenance in cohort c, MJ·head⁻¹·day⁻¹

LW_c = average live weight of the animal in cohort c, kg·head⁻¹.

TEMPreg_c = regression function depending on the temperature for cohort c, MJ·kg^{-0.75}·day⁻¹. Values are given in

Table 3.32.

C_{act} = dimensionless coefficient for activity with a value of 1.25 for backyard and 1.0 for layers and broilers.

TABLE 3.32. Temperature regression function for maintenance energy requirements

Animal cohort	TEMPreg _c (MJ·kg ^{-0.75} ·day ⁻¹)
Backyard production systems	
Reproductive adults (AF, AM)	0.693 − 9.9·10 ⁻³ * T ^a
Surplus hens when adults (laying eggs) (MF2)	0.095 - 9.9.10
Growing female and male chicks for replacement (RF, RM)	:f T < 1 CTb : 0 296 + 0 02 * (1 CT T)
Surplus hens when growing (not laying eggs) (MF1)	if $T < LCT^b$: 0.386 + 0.03 * (LCT – T) if $T \ge LCT$: 0.386 + 3.7·10 ⁻³ * (T – LCT)
Surplus roosters (MM)	11 1 2 LC1. 0.380 + 3.710 ** (1 - LC1)
Layers production systems	
Reproductive adults (AF, AM)	0.693 − 9.9·10 ⁻³ * T
Growing female and male chicks for replacement (RF, RM)	
Surplus roosters	0.390
Laying hens (before laying period) (MF1)	
Laying hens (during laying period) (MF2, MF3, MF4)	0.693 − 9.9·10 ⁻³ * T
Broiler production system	
Reproductive adults (AF, AM)	0.806 - 0.026 * T + 0.5·10 ⁻³ * T ²
Growing female and male chicks for replacement (RF, RM)	0.727 − 7.86·10 ⁻³ * T
Broiler animals (M2)	1.287 - 0.065 * T + 1.3·10 ⁻³ * T ²

^a Temperature (°C): average annual value for backyard systems; standard value of 20 for industrial Layers and Broilers systems.

3.5.3.2 – Energy requirement for growth (ME_{gro})

MEgro is the metabolizable energy requirement for growth.

Equation 3.50

 $ME_{gro,c} = DWG_c * 1000 * C_{gro,c}$

Where:

 $ME_{gro,c}$ = metabolizable energy required by animal for growth in cohort c, MJ·head⁻¹·day⁻¹

DWG_c = daily weight gain of animals in cohort c, kg·head⁻¹·day⁻¹

 $C_{gro,c}$ = growth coefficient for cohort c, MJ·kg⁻¹. Values are given in Table 3.33

TABLE 3.33. Growth coefficient for chickens

Backyard production systems Reproductive adults (AF, AM) Surplus hens when adults (laying eggs) (MF2) Growing female and male chicks for replacement (RF, RM) Surplus hens when growing (not laying eggs) (MF1) Surplus roosters (MM) Layers production systems	o (MJ·g ⁻¹)		
Reproductive adults (AF, AM) Surplus hens when adults (laying eggs) (MF2) Growing female and male chicks for replacement (RF, RM) Surplus hens when growing (not laying eggs) (MF1) Surplus roosters (MM) Layers production systems	028		
Surplus hens when adults (laying eggs) (MF2) Growing female and male chicks for replacement (RF, RM) Surplus hens when growing (not laying eggs) (MF1) Surplus roosters (MM) Layers production systems	028		
Surplus hens when adults (laying eggs) (MF2) Growing female and male chicks for replacement (RF, RM) Surplus hens when growing (not laying eggs) (MF1) Surplus roosters (MM) Layers production systems	020		
Surplus hens when growing (not laying eggs) (MF1) Surplus roosters (MM) Layers production systems			
Surplus roosters (MM) Layers production systems			
Layers production systems	021		
Reproductive adults (AF, AM) 0.0	Layers production systems		
• • • •	028		
Growing female and male chicks for replacement (RF, RM)			
Surplus roosters 0.0	021		
Laying hens (before laying period) (MF1)			
Laying hens (during laying period) (MF2, MF3, MF4) 0.0	0.028		
Broiler production system			
Reproductive adults (AF, AM) 0.0	032		
Growing female and male chicks for replacement (RF, RM) 0.0			
Broiler animals (M2) 0.0	010		

3.5.3.3 – Energy requirement for egg production (ME_{egg})

ME_{egg} is the metabolizable energy requirement for egg production. It applied only to the laying animals, specifically: reproductive females for all systems (AF), laying surplus females for backyard chickens (MF2) and surplus females during the first and second laying period for layers (MF2, MF3, MF4).

^b Low critic temperature (°C): calculated as 24.54 – 5.65 * F, where F is feathering score (0-1). It is assumed a feathering score of 1.

Equation 3.51

 $ME_{egg,c}$ = $10^{-3} * EGG * C_{egg}$

Where:

 $ME_{egg,c}$ = metabolizable energy required by animal for egg production in cohort c, MJ·head⁻¹·day⁻¹

EGG = egg mass production, g egg∙animal⁻¹·day⁻¹

C_{egg} = energy requirement coefficient for egg production, kJ·g egg⁻¹. Default value of 10.03 is used.

c = cohorts of laying females

3.5.3.4 – Total energy requirement (ME_{tot})

ME_{tot} is the total metabolizable energy requirement for each animal in a given cohort.

Equation 3.52

a. $ME_{tot,c}$ = $ME_{main,c} + ME_{gro,c} + ME_{egg,c}$

for c = cohorts of laying females

b. $ME_{tot,c}$ = $ME_{main,c} + ME_{gro,c}$

for c = cohorts other than laying females

Where:

 $ME_{tot,c}$ = total metabolizable energy required by the animal in cohort c, $MJ \cdot head^{-1} \cdot day^{-1}$

ME_{main,c} = metabolizable energy required by the animal for maintenance in cohort *c*, MJ·head⁻¹·day⁻¹

ME_{gro,c} = metabolizable energy required by the animal for growth in cohort *c*, MJ·head⁻¹·day⁻¹

ME_{egg,c} = metabolizable energy required by the animal for egg production in cohort c, MJ·head⁻¹·day⁻¹

3.6 – FEED INTAKE

For each cohort and each species, the feed intake is calculated by dividing the total animal's energy requirement by the average energy content of the ration following Equations 3.53 and 3.54.

Equation 3.53 - Ruminants

 $DMI_{T,c}$ = $GE_{tot,T,c} / DIET_{GE,T,fg}$

Where:

 $DMI_{T,c}$ = daily feed intake per animal in cohort c for species and system T, kg $DM \cdot head^{-1} \cdot day^{-1}$

 $GE_{tot,T,c}$ = total gross energy requirement by animal in cohort c for species and system T, MJ·head⁻¹·day⁻¹

DIET_{GE,T,fg} = average gross energy content of ration for feeding group fq for species and system T, MJ·kgDM⁻¹

c = animal cohort c for each ruminant species fg = feeding group as shown in Table 3.3

Equation 3.54 - Monogastrics

 $DMI_{T,c}$ = $ME_{tot,T,c} / DIET_{ME}$

Where:

 $DMI_{T,c}$ = daily feed intake per animal in cohort c for species and system T, kg $DM \cdot head^{-1} \cdot day^{-1}$

 $ME_{tot,T,c}$ = total gross energy requirement by animal in cohort c for species and system T, MJ·head⁻¹·day⁻¹

DIET_{ME} = average metabolizable energy content of ration, MJ·head⁻¹·day⁻¹

c = animal cohort c for each monogastric species

CHAPTER 4 – ANIMAL EMISSIONS MODULE

This chapter describes how to estimate emissions at herd level associated with animal production, specifically emissions from enteric fermentation and manure management.

The functions of the 'Animal emissions' module are to:

- Calculate the enteric emissions.
- Calculate the **methane** and **nitrous oxide** emissions arising from the **manure management**.
- Totalize the feed, enteric and manure management emissions for the whole herd or flock.

For a schematic representation of the animal emissions module, see Figure 4.1.

4.1 – MANURE MANAGEMENT SYSTEMS

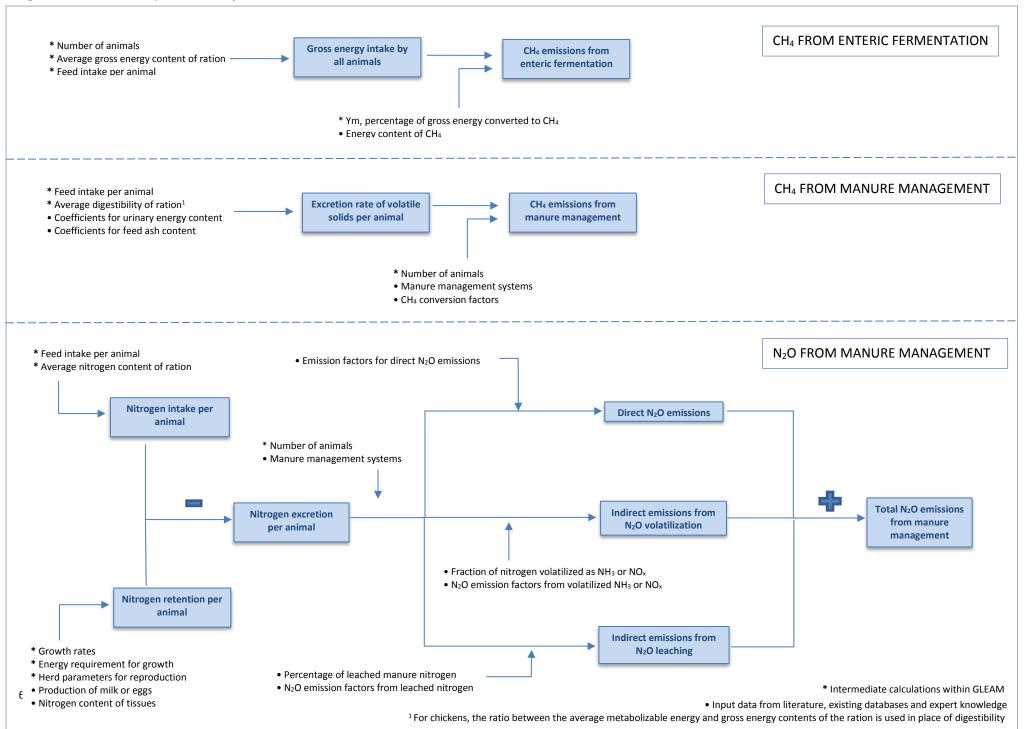

GLEAM uses the IPCC (2006) classification of manure management systems (MMS), defined in Table 4.1. On a global scale, there is very limited data available on how manure is managed. Consequently, GLEAM relies on various data sources such as national inventory reports, literature and expert knowledge to define the MMS and the share of manure allocated to each system. Regional MMS percentages are shown in Tables 4.2 to 4.11 (Supplement S1).

TABLE 4.1. Manure management systems definitions

Manure management	Description
system	
Pasture/Range/Paddock	The manure from pasture and range animals is allowed to lie as deposited, and is not managed.
Daily spread	Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.
Solid storage	The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of sufficient amount of bedding material or loss of moisture by evaporation.
Dry lot	A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.
Liquid/Slurry	Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year. It can present natural crusts (formed by the fibrous material contained in the manure) or not.
Uncovered anaerobic lagoon	A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilize fields.
Burned for fuel	The dung and urine are excreted on the fields. The sun dried dung cakes are burned for fuel.
Pit storage	Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.
Anaerobic digester	Animal excreta with or without straw are collected and anaerobically digested in a containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by microbial reduction of complex organic compounds into CO ₂ and CH ₄ , which is captured and flared or used as fuel.
Composting – Intensive windrow	Composting (biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production) in windrows with regular (at least daily) turning for mixing and aeration.
Poultry manure with litter	May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as high-rise manure management system and is a passive windrow composting when designed and operated properly.

Source: IPCC, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2006.

Figure 4.1 – Schematic representation of the animal emissions module

4.2 - METHANE EMISSIONS FROM ENTERIC FERMENTATION

Methane is produced during the digestive process in ruminant species and pigs. Emissions from chickens, although present, are negligible. Enteric emissions are closely related to the composition of the diet, particularly to the energy content. An enteric methane conversion factor, Y_m (percentage of gross energy converted to methane) is used to calculate the methane emissions from enteric fermentation. A Tier 2 approach is applied for the calculation of enteric CH₄ emissions due to the sensitivity of emissions to diet composition and the relative importance of enteric CH₄ to the overall GHG emissions profile.

Enteric emissions were calculated as follows:

Equation 4.1

 $CH_{4-Enteric,T,c}$ = $N_{T,c} * 365 * DIET_{GE,T} * DMI_{T,c} * (Y_{mT,c} / 100) / 55.65$

Where:

 $CH_{4-Enteric,T,c}$ = methane emissions from enteric fermentation for cohort c, species and system T, kg CH_{4} ·year⁻¹

 $N_{T,c}$ = number of animals in cohort c, species and system T, heads

DIET_{GE,T} = average gross energy content of ration for species and system *T*, MJ·kgDM⁻¹

 $DMI_{T,c}$ = daily feed intake per animal in cohort c for species and system T, kg $DM \cdot head^{-1} \cdot day^{-1}$

 $Y_{mT,c}$ = methane conversion factor for cohort c, species and system T, percentage of energy in feed

converted into methane. Values are given in Table 4.12.

= energy content of methane, MJ·kg CH₄-1

TABLE 4.12. Methane conversion factors for different species and cohorts

Animal cohort	Y _m (% of energy converted into CH₄)
Cattle and Buffaloes	
Cattle (non-feedlot animals)	9.75 – 0.05 * DIET _{DI,fg} ^a
Feedlot animals	3
Buffaloes	9.75 – 0.05 * DIET _{DIfg} ^a
Sheep and Goats	
Adult reproductive animals	9.75 – 0.05 * DIET _{DI,fg} ^a
Young replacement and fattening animals	7.75 – 0.05 * DIET _{DI,fg} ^a
Pigs	
Adult reproductive animals	1.01
Replacement and fattening animals	0.39

Where:

 $DIET_{DI}$ = average digestibility of ration for the feeding group fg (See Table 3.2), percentage

<u>4.3 – METHANE EMISSIONS FROM MANURE MANAGEMENT</u>

Methane emissions from manure management were calculated using the IPCC Tier 2 method, which requires the estimation of the excretion rate of volatile solids (VS) per animal and the estimation of the proportion of VS that are converted to CH₄. Methane emissions are calculated following Equation 4.2:

Equation 4.2

 $CH_{4-Manure,T,c} \hspace{1cm} = \hspace{1cm} N_{T,c} * \left[(365 * VS_{T,c}) * (B_{o,T} * 0.67 * \sum_{S} ((MCF_{S} / 100) * MS_{T,S})) \right]$

Where:

CH₄-Manure,T,c = total methane emissions from manure management for cohort c, species and system T, kg CH₄-year⁻¹

 $N_{T,c}$ = number of animals in cohort c, species and system T, heads

 $VS_{T,c}$ = daily volatile solid excreted by animal in cohort c, species and system T, kg VS-head $^{-1}$ -day $^{-1}$ = maximum methane producing capacity for manure for species and system T, m 3 CH_4 -kg VS^{-1}

MCF_S = methane conversion factor for each manure management system *S*, percentage. Values are given in

Table 4.13

 $MS_{T,S}$ = fraction of manure handled by manure management S for species and system T, fraction

0.67 = conversion factor from volume of methane into kg of gas, kg CH₄·m⁻³

TABLE 4.13. Methane conversion factors for manure management systems

Manure management system	MCF _s (%) depending on temperature T (°C)			
ivianure management system	T ≤ 14	14 < T < 26	T ≥ 26	
Pasture/Range/Paddock	1.0	1.5	2.0	
Daily spread	0.1	0.5	1.0	
Solid storage	2.0	4.0	5.0	
Dry lot	1.0	1.5	2.0	
Liquid/Slurry	19.494 – 1.5573 * T + 0.1351 * T ²			
Liquid/Slurry with crust	10.655 - 0.8181 * T + 0.0803 * T ²			
Uncovered anaerobic lagoon	44.953 + 2.6993 * T – 0.0527 * T ²			
Pit storage (< 1 month)	3.0 3.0 30.0			
Pit storage (> 1 month)	19.494 – 1.5573 * T + 0.1351 * T ²			
Anaerobic digester	10.0 10.0 10.0			
Composting – intensive windrow	0.5 1.0 1.5			
Burned for fuel	10.0 10.0 10.0			
Poultry manure with litter	1.5 1.5 1.5			

GLEAM calculates the VS excretion rate using Equation 4.3 for ruminants, Equation 4.4 for pigs and Equation 4.5 for chicken. All three are based on Equation 10.24 from IPCC (2006).

Equation 4.3 - Ruminants

 $VS_{T,c}$ = $DMI_{T,c} * (1.04 - DIET_{DI,fg} / 100) * 0.92$

Where:

 $VS_{T,c}$ = daily volatile solid excreted by animal in cohort c, species and system T, kg $VS \cdot head^{-1} \cdot day^{-1}$ $DMI_{T,c}$ = daily feed intake per animal in cohort c for species and system T, kg $DM \cdot head^{-1} \cdot day^{-1}$

DIET_{DI} = average digestibility of ration for feeding group fg, percentage

fg = feeding group as shown in Table 3.3

The formula is a modification of the original IPCC equation. First, the average gross energy content of the ration is used instead of a fixed value of 18.45 MJ·kg DM⁻¹. Thus, GE / DIET_{GE} equals the daily intake, DMI. Second, it is assumed that Urinary energy is 4% and the Ash content in feed is 8%. Therefore, GE * (GE + UE) becomes 1.04 and 1 – ASH becomes 0.92.

Equation 4.4 - Pigs

 $VS_{T,c}$ = $DMI_{T,c} * (1.02 - DIET_{DI,T} / 100) * 0.80$

Where:

VS_{T,c} = daily volatile solid excreted by animal in cohort c, species and system T, kg VS·head⁻¹·day⁻¹ DMI_{T,c} = daily feed intake per animal in cohort c for species and system T, kg DM·head⁻¹·day⁻¹

 $DIET_{DI}$ = average digestibility of ration for system T, percentage

It is assumed that Urinary energy is 2% and the Ash content in feed is 20%. Therefore, GE * (GE + UE) becomes 1.02 and 1 – ASH becomes 0.80.

Equation 4.5 - Chickens

 $VS_{T,c} = DMI_{T,c} * (1.0 - DIET_{ME,T} / DIET_{GE,T}) * 0.70$

Where:

 $VS_{T,c}$ = daily volatile solid excreted by animal in cohort c, species and system T, kg $VS \cdot head^{-1} \cdot day^{-1}$ $DMI_{T,c}$ = daily feed intake per animal in cohort c for species and system T, kg $DM \cdot head^{-1} \cdot day^{-1}$

DIET_{ME,T} = average metabolizable energy content of ration for system T, MJ·kg DM⁻¹

DIET_{GE,T} = average gross energy content of ration for system T, MJ·kg DM⁻¹

It is assumed that Urinary energy is 0% and the Ash content in feed is 30%. Therefore, GE * (GE + UE) becomes 1 and 1 – ASH becomes 0.70.

4.4 - NITROUS OXIDE EMISSIONS FROM MANURE MANAGEMENT

Nitrous oxide emissions from manure management using a Tier 2 approach requires the estimation of the rate of nitrogen excretion per animal and the estimation of the proportion of the excreted nitrogen that is converted to N_2O . The nitrogen excretion rates are calculated as the difference between intake and retention. Nitrogen intake depends on the feed intake and the nitrogen content of feed. Nitrogen retention is the amount of nitrogen that is retained in tissues, either as growth, pregnancy, live weight gain or production of milk or eggs.

The rate of conversion of excreted N to N_2O depends on the extent to which the conditions required for nitrification, denitrification, leaching and volatilization are present during manure management. GLEAM uses the IPCC (2006) default emission factors for direct and indirect N_2O emissions, along with variable nitrogen leaching rates.

4.4.1 – Nitrogen excretion rate

GLEAM calculates nitrogen excretion rates following Equations 4.6, which is based on Equations 10.31 to 10.33 from IPCC (2006), as depicted below:

Equation 4.6

 $Nx_{T,c}$ = 365 * ((DMI_{T,c} * DIET_{Ncont,T}) - N_{retentionT,c})

Where:

 $Nx_{T,c}$ = nitrogen excretion per animal in cohort c, species and system T, kg $N \cdot head^{-1} \cdot year^{-1}$ $DMI_{T,c}$ = daily feed intake per animal in cohort c for species and system T, kg $DM \cdot head^{-1} \cdot day^{-1}$ $DIET_{Ncont,T}$ = average nitrogen content of ration for species and system T, kg $N \cdot kg$ DM diet⁻¹

 $N_{\text{retentionT,c}}$ = daily nitrogen retention in cohort c, species and system T, kg $N \cdot \text{head}^{-1} \cdot \text{day}^{-1}$. See Table 4.14.

TABLE 4.14. Nitrogen retention formulas for species and cohorts

Livestock category/cohort	Nitrogen retention
Ruminant species: adult females (AF)	Equation 4.7a
Ruminant species: adult males (AM)	N retention is assumed to be null
Ruminant species: replacement females (RF)	Equation 4.7b
Ruminant species: other cohorts (RM, MF, MM)	Equation 4.7c
Pigs: adult females (AF)	Equation 4.8a
Pigs: adult males (AM)	N retention is assumed to be null
Pigs: replacement females (RF)	Equation 4.8b
Pigs: other cohorts (RM, M2)	Equation 4.8c
Chicken: laying hens (AF, MF2, MF4)	Equation 4.9a
Chicken: laying hens during the molting period (MF3)	N retention is assumed to be null
Chicken: other cohorts (AM, RF, RM,MF1, MM, M2)	Equation 4.9b

Equation 4.7 - Ruminants

a. $N_{retention,AF}$ = (Milk * Milk_{prot} / 6.38) + (Ckg/365 * (268 – (7.03 * NE_{gro,RF} / DWG_{RF})) * 10⁻³ / 6.25)

b. $N_{retention,RF}$ = $(DWG_{RF} * (268 - (7.03 * NE_{gro,RF} / DWG_{RF})) * 10^{-3} / 6.25) + (Ckg / 365 * (268 - (7.03 * NE_{gro,RF} / DWG_{RF})) * 10^{-3} / 6.25)$

 $10^{-3} / 6.25) / AFC$

c. $N_{retention,c}$ = $(DWG_c * (268 - (7.03 * NE_{gro,c} / DWG_c)) * 10^{-3} / 6.25)$

Where:

 $N_{\text{retention},AF}$ = daily nitrogen retention by animal in cohort AF, kg $N \cdot \text{head}^{-1} \cdot \text{day}^{-1}$ $N_{\text{retention},RF}$ = daily nitrogen retention by animal in cohort RF, kg $N \cdot \text{head}^{-1} \cdot \text{day}^{-1}$ $N_{\text{retention},c}$ = daily nitrogen retention by animal in cohort c, kg $N \cdot \text{head}^{-1} \cdot \text{day}^{-1}$

Milk = average daily production of milk, applicable only to milking animals, kg milk·head⁻¹·day⁻¹

 $Milk_{prot}$ = average fraction of protein in milk, fraction

6.38 = conversion from milk protein to milk nitrogen, kg protein⋅kg N⁻¹

Ckg = average live weight of calves, kg·head⁻¹·day⁻¹

DWG_{RF} = average daily weight gain for cohort RF, kg·head⁻¹·day⁻¹ DWG_c = average daily weight gain for cohort c, kg·head⁻¹·day⁻¹

268 and 7.03 = constants from IPCC (2006)

NE_{gro,RF} = net energy required by animal for growth in cohort *RF*, MJ·head⁻¹·day⁻¹

NE_{gro,c} = net energy required by animal for growth in cohort *c*, MJ·head⁻¹·day⁻¹

6.25 = conversion from dietary protein to dietary nitrogen, kg protein·kg N⁻¹

AFC = age at first calving, years

c = cohort for animals other than adult or replacement females

Equation 4.8 - Pigs

a. N_{retention,AF} = ((0.025 * LITSIZE * FR * (Wkg - Ckg) / 0.98) + (0.025 * LITSIZE * FR * Ckg)) / 365

b. $N_{retention,RF}$ = 0.025 * DWG_c * AFCF⁻¹ * (((0.025 * LITSIZE * FR * (Wkg - Ckg) / 0.98) + (0.025 * LITSIZE * FR * Ckg)) /

365)

c. $N_{retention,c}$ = 0.025 * DWG_c

Where:

N_{retention,AF} = daily nitrogen retention by animal in cohort *AF*, kg N·head⁻¹·day⁻¹

N_{retention,RF} = daily nitrogen retention by animal in cohort *RF*, kg N·head⁻¹·day⁻¹

N_{retention,c} = daily nitrogen retention by animal in cohort *c*, kg N·head⁻¹·day⁻¹

0.025 = average content of nitrogen in live weight, kg N·kg head⁻¹

LITSIZE = litter size, heads

FR = fertility rate of sows, parturitions·year⁻¹
Wkg = live weight of piglet at weaning age, kg·head⁻¹
Ckg = live weight of piglets at birth, kg·head⁻¹
0.98 = protein digestibility as fraction, fraction

DWG_c = average daily weight gain for cohort c, kg·head⁻¹·day⁻¹

AFCF = age at first parturition, year

c = cohort for animals other than adult or replacement females

Equation 4.9 - Chickens

a. $N_{retention,c}$ = $N_{LW} * DWG + N_{EGG} * 10^{-3} * EGG$

for c = cohorts of laying females

b. $N_{retention,c}$ = $N_{LW} * DWG$

for c = cohorts other than laying and molting females

Where:

 $N_{\text{retention,c}}$ = daily nitrogen retention by animal in cohort c, kg $N \cdot \text{head}^{-1} \cdot \text{day}^{-1}$

 N_{LW} = average content of nitrogen in live weight, kg N·kg head⁻¹. Default value of 0.028 is used.

DWG = average daily weight gain for cohort c, kg·head⁻¹·day⁻¹

 N_{EGG} = average content of nitrogen in eggs, kg N·kg egg⁻¹. Default value of 0.0185 is used.

EGG = egg mass production, g egg·head⁻¹·day⁻¹

4.4.2 – Direct N₂O emissions

GLEAM calculates direct emissions using Equation 4.10, based on Equation 10.25 from IPCC (2006).

Equation 4.10

 $N_2O_{Direct,T,c}$ = $(44 / 28) * N_{T,c} * N_{XT,c} * \sum_{S} (EF_{Dir,S} * MS_S)$

Where:

 $N_2O_{Direct,T,c}$ = total direct nitrous oxide emissions from manure management from cohort c, species and system T,

kg N₂O·year⁻¹

EF_{Dir,S} = emission factor for direct nitrous oxide emissions from manure management system *S*, kg N₂O-N·kg

N⁻¹. Values are shown in Table 4.15.

 $N_{T,c}$ = number of animals in cohort c, species and system T, head

Nx_{T,c} = nitrogen excretion per animal in cohort c, species and system T, kg N·head-1·year-1

MSs = fraction of manure handled by manure management system S, fraction

TABLE 4.15. Emission factor for direct emissions for different manure management systems

Manure management system	EF _{Dir,S} (kg N ₂ O-N·kg N ⁻¹)
Pasture/Range/Paddock	_a
Daily spread	0.000
Solid storage	0.005
Dry lot	0.020
Liquid/Slurry	0.000
Liquid/Slurry with crust	0.005
Uncovered anaerobic lagoon	0.000
Pit storage	0.002
Anaerobic digester	0.000
Composting – intensive windrow	0.100
Burned for fuel	_b
Poultry manure with litter	0.001

^a **Ruminants**: emissions from 'Pasture' for ruminant species are calculated in the feed emissions module, as manure used as organic fertilizer, to avoid double-counting. Therefore, $EF_{Dir,S} = 0$. **Monogastrics**: it is assumed to be similar to drylot. Thus, $EF_{Dir,S} = 0.020$.

4.4.3 – Indirect N₂O emissions: volatilization

GLEAM calculates indirect emissions from volatilization using Equation 4.11, based in Equation 10.26 from IPCC (2006).

Equation 4.11

 $N_2O_{Vol,T,c}$ = $(44 / 28) * EF_{Vol} * N_{T,c} * N_{X,c} * \sum_{S} (MS_S * (Frac_{GasMS,S} / 100))$

Where:

 $N_2O_{Vol,T,c}$ = indirect N_2O emissions due to volatilization from manure management from cohort c, species and

system T, kg N₂O·year⁻¹

EF_{Vol} = emission factor for N₂O emissions from N volatilized as NH₃ and NO_x, kg N₂O-N·kg N volatilized⁻¹. Default

value of 0.01 is used.

 $N_{T,c}$ = number of animals in cohort c, species and system T, head

 $Nx_{T,c}$ = nitrogen excretion per animal in cohort c, species and system T, kg N·head⁻¹·year⁻¹

MSs = fraction of manure handled by manure management system S, fraction

Frac_{GasMS,S} = percentage of manure nitrogen that volatilizes as NH₃ and NO_x in the manure management system S,

percentage. Values are given in Table 4.16.

44 / 28 = conversion factor from N_2O-N to N_2O emissions.

4.4.4 – Indirect N_2O emissions: leaching

GLEAM calculates indirect emissions from volatilization using Equation 4.12, based on Equation 10.28 from IPCC (2006).

Equation 4.12

 $N_2O_{Leach,T,c}$ = $(44 / 28) * EF_{Leach} * N_c * N_{X_c} * \sum_{S} (MS_S * (Frac_{LeachMS,S} / 100))$

Where:

 $N_2O_{Leach,T,c}$ = indirect N_2O emissions due to leaching from manure management from cohort c, species and system T,

kg N₂O·year⁻¹

EF_{Leach} = emission factor for N₂O emissions from leaching and runoff, kg N₂O-N·kg N leached⁻¹. Default value of

0.0075 is used.

 $N_{T,c}$ = number of animals in cohort c, species and system T, head

 $Nx_{T,c}$ = nitrogen excretion per animal in cohort c, species and system T, kg N·head⁻¹·year⁻¹

MSs = fraction of manure handled by manure management system S, fraction

Frac_{LeachMS,S} = percentage of managed manure nitrogen lost due to leaching and runoff in the manure management

system S, percentage. Values are given in Table 4.17.

44/28 = conversion factor from N₂O-N to N₂O emissions.

^b The emission factor is corrected by the fraction of energy not assimilated. **Ruminants**: $EF_{Dir,S} = 0.020 * (100 - DIET_{DI})$. **Monogastrics**: $EF_{Dir,S} = 0.020 * (1 - DIET_{ME} / DIET_{GE})$.

TABLE 4.16. Values for nitrogen losses due to volatilization of NH₃ and NO_x from manure management

Livestock category	Manure management system	Frac _{GasMS} (%)
Dairy cattle	Pasture/Range/Paddock	0
	Daily spread	7
	Solid storage	30
	Dry lot	20
	Liquid/Slurry	40
	Uncovered anaerobic lagoon	35
Beef cattle and Buffaloes	Pasture/Range/Paddock	0
	Daily spread	7
	Solid storage	45
	Dry lot	30
	Liquid/Slurry	40
	Uncovered anaerobic lagoon	35
Feedlot cattle	Solid storage	45
	Dry lot	30
	Liquid/Slurry	40
	Uncovered anaerobic lagoon	35
	Pit storage	28
	Composting – intensive windrow	40
Small ruminants	Pasture/Range/Paddock	0
	Daily spread	7
	Solid storage	12
	Dry lot	30
	Liquid/Slurry	40
	Uncovered anaerobic lagoon	35
Pigs	Pasture/Range/Paddock	20
	Daily spread	7
	Solid storage	45
	Dry lot	30
	Liquid/Slurry	48
	Liquid/Slurry with crust	48
	Uncovered anaerobic lagoon	40
	Pit storage (< 1 month)	25
	Pit storage (> 1 month)	25
	Anaerobic digester	0
Chicken	Pasture/Range/Paddock	20
- Cinchen	Daily spread	7
	Solid storage	45
	Dry lot	30
	Liquid/Slurry	48
	Liquid/Slurry with crust	48
	Uncovered anaerobic lagoon	40
	Pit storage (< 1 month)	55
	Pit storage (> 1 month)	55
	Anaerobic digester	0
	Poultry manure with litter	
	Poultry manure with litter	40

TABLE 4.17 Values for nitrogen losses due to leaching and runoff from manure management (%)

Region	Solid MMS	Liquid MMS
North America	4	2
Russian Federation	4	4
Western Europe	4	2
Eastern Europe	4	4
Near East and North Africa	2-10*	15-20*
Oceania	2	15
South Asia	2-10*	15-20*
Latin America and the Caribbean	2-10*	15-20*
Sub-Saharan Africa	2-10*	15-20*

^{*} Variation in percentages depending on the combination of production systems (grassland or mixed) and agro-ecological zones.

4.5 - TOTALIZING EMISSIONS AT HERD OR FLOCK LEVEL

The last step of the animal emissions module is to totalize, for the entre herd or flock, the emissions related to animal production (enteric fermentation and manure management).

Equation 4.13

d. CH_{4-Enteric,T} = \sum_c (CH_{4-Enteric,T,c}) e. CH_{4-Manure,T} = \sum_c (CH_{4-Manure,T,c})

f. $N_2O_{-Manure,T}$ = $\sum_{c} (N_2O_{Direct,T,c} + N_2O_{Vol,T,c} + N_2O_{Leach,T,c})$

Where:

CH_{4-Enteric,T} = total methane emissions from enteric fermentation for species and system *T*, kg CH₄·year⁻¹

CH_{4-Manure,T} = total methane emissions from manure management for species and system *T*, kg CH₄·year⁻¹

N₂O_{-Manure,T} = total nitrous oxide emissions from manure management for species and system *T*, kg N₂O·year⁻¹

CH_{4-Enteric,T,c} = methane emissions from enteric fermentation for species and system *T* and cohort *c*, kg CH₄·year⁻¹

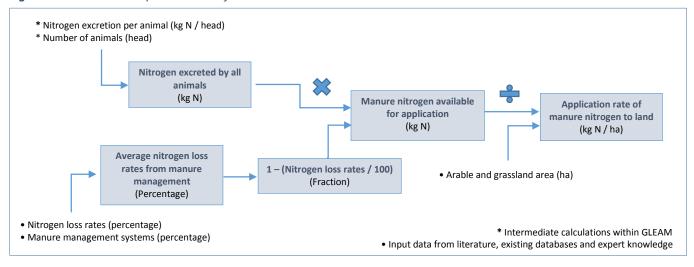
CH_{4-Manure,T,c} = methane emissions from manure management for species and system *T* and cohort *c*, kg CH₄·year⁻¹

N₂O_{Direct,T,c} = direct nitrous oxide emissions from manure management for species and system *T* and cohort *c*, kg

 $N_2O \cdot year^{-1}$

 $N_2O_{Vol,T,c}$ = indirect nitrous oxide emissions due to volatilization from manure management for species and system T and cohort c, kg N_2O ·year⁻¹

 $N_2O_{\text{Leach},T,c}$ = indirect nitrous oxide emissions due to leaching from manure management for species and system T and cohort c, kg $N_2O\cdot\text{year}^{-1}$


CHAPTER 5 – MANURE MODULE

Manure management and application is a key component of crop and livestock production systems. Manure contributes to soil fertility and to nutrient and energy cycles. It is also responsible for emissions of N₂O and CH₄. GLEAM estimates GHG emissions from manure storage and management, and from its application on crops used as livestock feed and on pastures.

The function of the 'Manure' module is to calculate the losses of nitrogen through manure management and the rate at which excreted nitrogen is applied and deposited in feed crops' fields and pastures. Actual emissions of N_2O (and CH_4) are calculated in the Animal emissions module.

For a schematic representation of the manure module, see Figure 5.1.

Figure 5.1 – Schematic representation of the manure module

5.1 – NITROGEN EXCRETION RATES

Total excreted nitrogen is based upon IPCC Tier 2 approach as defined in Section 4.4.1 and calculated in Equation 5.1.

Equation 5.1

 $NEX_{T} = \sum_{c} (N_{T,c} * Nx_{T,c})$

Where:

NEX_T = total nitrogen excreted from all animals of species and system *T*, kg N N_{T,c} = number of animals from species and system *T* and from cohort *c*, head

 $Nx_{T,c}$ = nitrogen excretion by animal of species and system T and cohort c (Equation 4.6), kg N·head⁻¹

5.2 - NITROGEN LOSSES FROM MANAGEMENT

Total nitrogen losses are calculated following Equation 5.2.

Equation 5.2

NLOSS_T = \sum_{MS} (MMS_{T,S} * NLOSS_S / 100)

Where:

NLOSS_T = average nitrogen loss rates from all animals of species and system *T*, percentage MMS_{T,S} = share of manure management system *S* for species and system *T*, percentage

NLOSS_S = nitrogen losses rates from manure management *S*, percentage. Values are taken from IPCC

Guidelines (Table 10.23, Chapter 10, Volume 4).

5.2 - APPLICATION RATES TO ARABLE AND PASTURE LAND

Nitrogen application rate to arable and pasture land per hectare are calculated following Equation 5.3. Data on arable and pasture land were obtained from Latham et. al. 2014.

Equation 5.3

NMANUREHA = \sum_{T} (NEX_T * (1 – NLOSS_T / 100)) / (ARABLEHA + PASTUREHA)

Where:

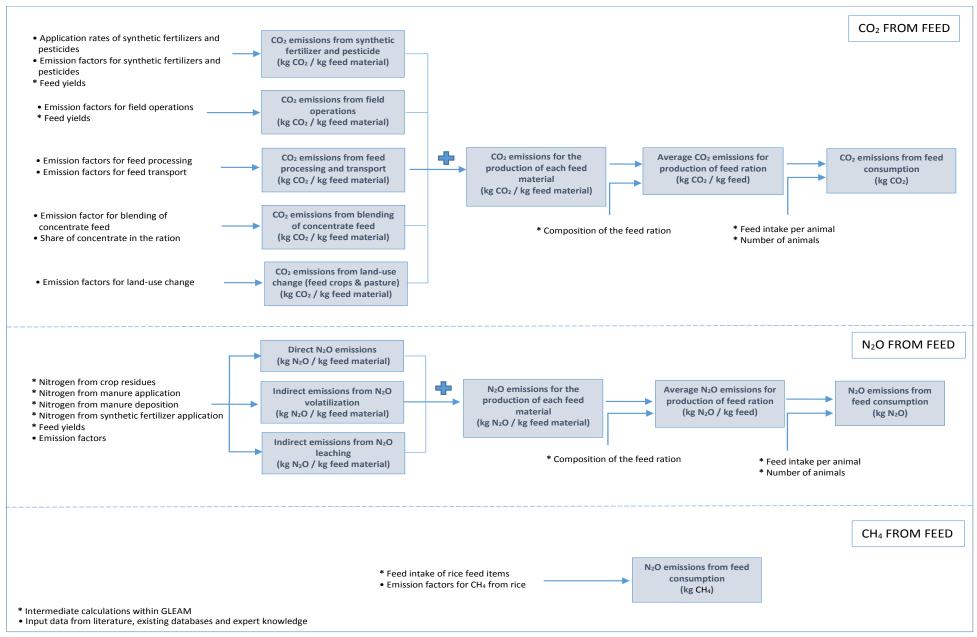
NMANUREHA = total nitrogen per hectare available for application, kg N·ha⁻¹

 NEX_T = total nitrogen excreted from all animals of species and system T, kg N

 $NLOSS_T$ = average nitrogen loss rates from all animals of species and system T, percentage

ARABLEHA = total hectares of arable land, ha PASTUREHA = total hectares of pastureland, ha

CHAPTER 6 – FEED EMISSIONS MODULE


Emissions associated with feed production arise from different sources and include different GHGs. First, emissions of carbon dioxide are associated with the production of synthetic fertilizers and pesticides, energy consumption for tillage, crop management, harvest and storage and, in the case of some feed materials such as by-products, with processing. For some crops emissions include the transport and the energy used in blending and pelleting.

Second, nitrous oxide emissions derive from fertilizer application, manure application and deposition and nitrogen from crop residues, in the form of direct and indirect emissions, through volatilization and leaching. Finally, methane emissions can arise from rice cultivation (rice used as feed).

The functions of the 'Feed emissions' module are to:

- Calculate the **GHG emissions** related to feed production.
- Calculate the **total emissions** related to the **feed consumption**.
- Totalize the **feed** emissions **for the whole herd or flock**.

Figure 6.1 – Schematic representation of the feed emissions module

6.1 - CO2 EMISSIONS

6.1.1 - Synthetic N, P and K fertilization and pesticides manufacture

Synthetic nitrogen, phosphorus and potassium fertilizer, as well as pesticides application rates were defined at a national level, based on the LEAP database (LEAP, 2015). CO₂ emissions related to the manufacture and transport of fertilizers and pesticides were calculated using Equation 6.1:

Equation 6.1

a. CO2NFERTHA; = NFERTHA; * EF_{NFERT}
b. CO2PFERTHA; = PFERTHA; * EF_{PFERT}
c. CO2KFERTHA; = KFERTHA; * EF_{KFERT}
d. CO2PESTHA; = PESTHA; * EF_{PEST}

Where:

co2...HA_i = carbon dioxide emissions from product ... (N, P, K fertilizer or pesticides) manufacturing for feed

material i, kg CO₂·ha⁻¹

...HA_i = application rate of product ... (N, P, K fertilizer or pesticides) for feed material *i*, kg N·ha⁻¹

EF... = regional emission factor of N, P, K fertilizer manufacture or global emission factor for pesticides

manufacture, kg CO₂·kg product⁻¹.

6.1.2. - Field operations

Energy is used on-farm for a variety of field operations required for crop cultivation, such as: ploughing, seedbed preparation, sowing, fertilization (lime, organic and synthetic fertilizer application), pesticide spraying, weed control, irrigation and harvesting. Data on the type and amount of energy required and emissions associated per hectare of each feed crop were taken from literature review, existing databases (LEAP, 2015), expert knowledge and surveys (Tables 6.1 and 6.2; Supplement S1). Field operations are undertaken using non-mechanized power sources, i.e. human or animal labour, in some countries. To reflect this variation, the emissions per hectare were adjusted according to the proportion of the field operations undertaken using non-mechanized power sources for each feed material (Tables 6.3 and 6.4; Supplement S1).

6.1.3 - Feed transport and processing

Forage, local feeds and swill, by definition, are transported over minimal distances and therefore emissions for transport are set to zero. Non-local feeds for monogastrics and by-products and concentrate for ruminants are assumed to be transported between 100 km and 700 km by road to their place of processing. In countries where more feed is consumed than produced (i.e. net importers), feed materials that are known to be traded globally (e.g. soybean cakes and palm kernel cakes) also receive emissions that reflect typical sea transport distances. Emissions from processing arise from the energy consumed in activities such as milling, crushing and heating, which are used to process whole crop materials into specific products. Data on transport distances, energy consumption for processing activities and associated emissions for each feed materials were taken from literature review, existing databases and expert knowledge (Tables 6.5 and 6.6; Supplement S1).

6.1.4 – Blending and transport of concentrate feed

In addition, energy is used in feed mills for blending concentrate feed materials, in some cases for transforming the blended materials into pellets, and to transport them to their point of sale. It was assumed that an average of 186 MJ of electricity and 188 MJ of gas were required to blend 1,000 kg of DM, and that the average transport distance was 200 km, which results in an emission factor of **0.0786 kg CO₂-eq·kg concentrate feed**⁻¹. Therefore, emissions from blending and transport of concentrate feed are calculated as follows:

Equation 6.2 - Ruminants

 $CO_2kg_{-blend,i.c,T}$ = $EF_{blend} * CONC_{fg,T} * CF_{i,T}$

for i = 18 to 29 from Table 3.2

Where:

CO₂kg_{-blend,i,c,T} = total carbon dioxide emissions from blending and transport of concentrate feed per kg of dry matter

for feed material i, cohort c, species and system T, kg $CO_2 \cdot kg DM^{-1}$.

EF_{blend} = emission factor for blending and transport of concentrate feed, kg CO2·kg DM-1. Default value of 0.0786.

 $CONC_{fg,T}$ = fraction of concentrates in the diet for the feeding group fg, species and system T, fraction

CFi,T = fraction of feed material i in the composition of concentrate feed for species and system T, fraction

Equation 6.3 - Monogastrics

 $CO_2kg_{-blend,i.c,T} = EF_{blend} * FEED_{i,T}$

for i = 21 to 42 from Table 3.14

CO₂kg_{-blend,i,c,T} = total carbon dioxide emissions from blending and transport of concentrate feed per kg of dry matter

for feed material i, cohort c, species and system T, kg $CO_2 \cdot kg DM^{-1}$.

EF_{blend} = emission factor for blending and transport of concentrate feed, kg CO₂·kg DM⁻¹. Default value of

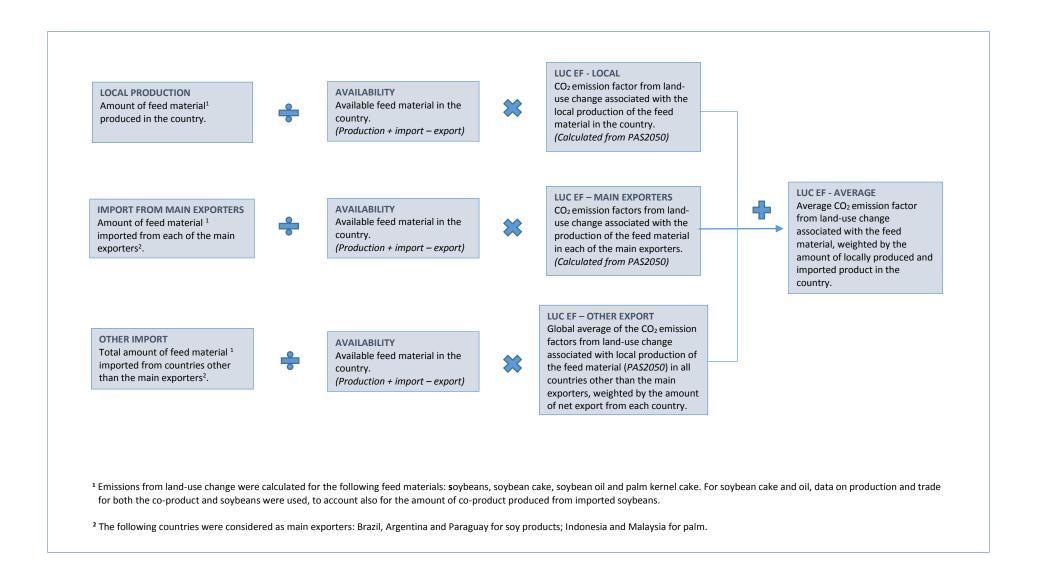
0.0786.

FEEDi,T = fraction of feed material i in the ration of species and system T, fraction. Described in section 3.3.5

6.1.5 – Land-use change: approach for feed crops

Land-use change is a highly complex process. It results from the interaction of diverse drivers which may be direct or indirect and can involve numerous transitions, such as clearing, grazing, cultivation, abandonment and secondary forest re-growth. From a climate change point of view, deforestation is the land-use change process generating most GHG emissions (IPCC, 2007). The debate surrounding the key drivers of deforestation is ongoing and so is the attribution of GHG emissions to these drivers.

In GLEAM, land-use changes are considered as the transformation of forest to arable land for feed crops and that of forest to pasture. Emissions are generally quantified according to IPCC Tier I guidelines (IPCC, 2006).


The expansion of feed crops is limited to soybean and to palm oil production. This decision results from the observation of trends in land-use transitions and crop expansions: over the 1990–2010 period, which is used as the reference time period in GLEAM for the analysis of land-use change, the main global cropland expansions were for maize, soybean production and palm. However, only soybean and palm tree production was correlated with an increased demand for feed.

Emissions related to LUC for soybean and palm kernel cakes were calculated using the PAS2050 tool (BSI, 2008), which provides an estimate of emissions associated with the cultivation of soybean and palm oil trees at national level (Tables 6.7 and 6.8; Supplement S1).

GHG emissions related to land-use change were attributed to the systems and regions that use feed resources associated with deforestation. Trade matrices were used to track international flows of soybean, soybean cake, soybean oil and palm kernel cakes and to estimate the share of products from deforested areas in the ration of animals.

Due to their role in driving land use change, the analysis focused on soybean products imported from Brazil, Argentina and Paraguay and palm kernel cake imported from Indonesia and Malaysia. These countries, in addition to being major exporters also have some of the highest deforestation rates associated with the expansion of soybean and palm tree production. Within Latin America, 95% of the soybean area expansion that took place over the period 1990–2010 happened in Brazil, Argentina and Paraguay; while in South-east Asia, 94% of the palm expansion during the same period took place in Indonesia and Malaysia. For the share of these feed materials imported from other countries, instead, a global average emission factor weighted by the net export was used. For a schematic representation of the calculation of the average emission factors for LUC associated with the production and import of soy products and palm kernel cake in each country see Figure 6.2 Further explanations and sensitivity analyses are available in FAO (2013a) and FAO (2013b).

Figure 6.2 – Schematic representation of the calculation of the average emission factors for land-use change associated with the production and import of soybean products and palm kernel cake in a given country.

6.1.6 – Land-use change: pasture expansion

At global level, a large share of deforested area is destined to pasture expansion. Table 6.9 shows the net changes for different land use categories across regions.

TABLE 6.9 Net changes in area for main land-use categories (1990-2010)

Countries	Arable land & permanent crops	Pasture area	Forest area	Other land
	Area (1,000 hectare)			
Africa	55,989	-20,894	-67,458	32,488
Asia*	6,321	48,722	25,263	-64,821
Europe	-78,727	-230,713	3,524	-150,747
North America	-32,696	9,676	5,299	23,443
Latin America and the Caribbean	37,426	20,177	-86,199	25,366
Oceania	-6,937	-63,397	-4,824	75,171

^{*} Central Asia is excluded due to incomplete dataset.

Emissions from deforestation associated with pasture expansion were quantified for Latin America only. This simplification results from the observation that, during the period 1990–2010, significant pasture expansions and simultaneous forest area decrease occurred in Latin America and Africa. However, grazing does not appear to be a significant driver of deforestation in Africa. In Latin America, the quantification of emissions was limited to the four countries accounting for over 97% of the regional area converted from forest to pasture (i.e. Brazil, Chile, Nicaragua and Paraguay).

Emissions associated with the expansion of pasture into forest areas in Latin America were attributed to beef in grassland base systems production in those countries in which the conversion occurred. In absolute term, this is equal to 387 million tonnes per year.

The approach is based on the IPCC stock-based approach termed the *Stock-Difference Method*, which can be applied where carbon stocks are measured at two points in time to assess carbon stock changes (IPCC, 2006). The calculations of land-use change were accomplished in two steps: first, the assessment of land-use dynamics; and second, the carbon emissions based on land-use dynamics and biophysical conditions. A complete assessment of carbon emissions from LUC involves the quantification of several key elements including deforestation rates, land-use dynamics, and initial carbon stocks in biomass and soil.

Total land area converted

Changes in land-use area were estimated on the basis of the Tier 1 approach outlined in Chapter 3 of the IPCC guidelines, which estimates the total change in area for each individual land-use category in each country. Table 6.10 presents the countries in which the increase in pasture area was largely facilitated by a decrease in forest area, and our estimates show that about 13 million hectares were deforested for pasture establishment.

TABLE 6.10 Pasture expansion against forestland in Latin America (1900-2010)

Countries	Change in pasture area (1,000 hectare)	Share of regional expansion (percentage)
Brazil	11,800	71.9
Chile	1,165	7.1
Paraguay	2,040	12.4
Nicaragua	670	4.1
Other*	726	4.4
Total	16,401	100.0

^{*} Other include: Honduras, Ecuador, Panama, El Salvador and Belize

Changes in carbon stocks from biomass, dead organic matter and soil organic carbon

Changes in carbon stocks from above- and below-ground biomass were calculated using the Equation 2.16 from IPCC 2006 guidelines (Chapter 2, Volume 4). Following the Tier 1 approach, default biomass after conversion of forest to grassland is 0 tonnes of dry matter per hectare, under the assumption that all biomass is cleared. Due to the lack of data on below-ground biomass, the ratio of below-to-above ground biomass (root-to-shoot ratio) was used to estimate the below-ground component of biomass. The approach to estimating changes in carbon stocks in dead wood and litter pools is to estimate the carbon stocks

in the old and new land-use categories and apply this change in the year of conversion. Equation 2.23 (IPCC, 2006, Volume 4, Chapter 2) was used to estimate changes in carbon stocks from dead organic matter. Tier 1 default factors for dead wood and litter were taken from IPCC (2006, Volume 4, Chapter 2, Table 2.2).

The calculation of soil organic carbon losses per hectare of area transformed from forest to grassland is based on equation 2.25 in IPCC (2006, Volume 4, Chapter 2), which takes into account changes in soil carbon stocks associated with type of land use, management practices and input of organic matter (fertilization, irrigation, liming and grazing intensity) in the soil. To establish SOC stocks, the soil divisions were further aggregated into dominant soil type classes defined in IPCC guidelines based on the World Reference Base for Soil Resources classification. The 2006 IPCC guidelines provide average default SOC stocks for the dominant soil classes clustered by eco-region. For Tier 1, all stock change factors were assumed to be equal to 1 for forest land, corresponding to the default values in IPCC guidelines. For grasslands, stock change factors used for land use and input were also assigned a value of 1. Results, in Table 6.11, show a net decrease in SOC with losses ranging between 1.1 to 2.3 t C ha⁻¹.

TABLE 6.11. Soil organic carbon pool at 0-30 cm depth

TABLE 0.11. Soil organic carbon poor at 0 30 cm acptin							
Countries	Soil C stocks under forest	Soil C stocks under grassland	Net change in carbon stocks	Net annual change			
	tonnes C·ha ⁻¹		tonnes C·ha⁻¹	tonnes C·ha-1-year-1			
Brazil	60	58.20	-1.8	-0.11			
Chile	44	42.68	-1.3	-0.08			
Paraguay	65	63.05	-2.0	-0.12			
Nicaragua	35	33.95	-1.1	-0.07			
Honduras	56	54.32	-1.7	-0.11			
Ecuador	78	75.66	-2.3	-0.15			
Panama	65	63.05	-2.0	-0.12			
El Salvador	50	48.50	-1.5	-0.09			
Belize	65	63.05	-2.0	-0.12			

6.2 - NITROUS OXIDE EMISSIONS

The emissions of nitrous oxide from cropping arise from three main sources of nitrogen inputs: 1) manure applied on crops or deposited on pastures, 2) synthetic fertilizers and 3) crop residues. From all of these nitrogen sources, nitrous oxide can be released through direct emissions and indirect ones from leaching and volatilization processes, similarly to what has been described in Section 4.4 for manure management. All were calculated using IPCC (2006) Tier 1 methodology.

6.2.1 – Nitrogen from manure applied on crops or deposited on pastures

Manure nitrogen application rates were calculated in the manure module (Chapter 5). This input of applied manure nitrogen is used for most of the feed materials, with the exception of fresh grass in ruminant feed rations (see feed materials 1 and 4 in Table 3.2). Regarding Feed materials 1 and 4, manure deposited on pastures by grazing animals is an alternative source of nitrogen. This input of manure nitrogen is calculated as follows:

Equation 6.4

DMYG_i * (Ncont_i / 1000) * ($\sum_c (N_{T,c} * N_{retention,T,c} * 365)$) / ($\sum_c (N_{T,c} * N_{X,T,c})$) Ngraze_{i,T} = for i = 1 and 4 from Table 3.2 (only for ruminants) Where: $Ngraze_{i,T}$ = nitrogen input rate from manure deposited on pastures for feed material i, species and system T (only ruminants), kg N·ha-1 **DMYG**i gross dry matter yield of feed material i, kg·ha-1 Nconti nitrogen content of feed material i, gN·kg DM⁻¹ = number of animals in cohort c, species and system T (only ruminants), head $N_{T,c}$ = $N_{\text{retentionT,c}}$ = daily nitrogen retention in cohort c, species and system T (only ruminants), kg N·head-1·day-1 nitrogen excretion per animal in cohort c, species and system T (only ruminants), kg N·head-1-year-1 $Nx_{T,c}$

Emissions of nitrous oxide per hectare of each feed material from manure applied on crops or deposited on pastures are then calculated using Equations 6.5.a (deposited on pasture) and 6.5.b (applied on crops):

Equation 6.5

a. $N_2Oha_{-manure,i}$ = $Ngraze_{i,T} * (EF_{dir-p} + Frac_{vol1} * EF_{vol} + Frac_{leach} * EF_{leach}) * 44 / 28$

for i = 1 and 4 from Table 3.2 (only for ruminants)

b. N₂Oha_{-manure,i} = NMANUREHA * (EF_{dir} + Frac_{vol1} * EF_{vol} + Frac_{leach} * EF_{leach}) * 44 / 28

for i = other feed materials

Where:

N₂Oha-manure,i = total nitrous oxide emissions from manure application or deposition per hectare of feed material *i*,

kg N₂O·ha⁻¹

 $Ngraze_{i,T}$ = nitrogen input rate from manure deposited on pastures for feed material i, species and system T

(only ruminants), kg N·ha⁻¹

NMANUREHA = total nitrogen per hectare available for application, kg N·ha⁻¹

EF_{dir-p} = emission factor for direct nitrous oxide emissions from manure deposited on pasture, kg N₂O-N⋅kg

N⁻¹. Default value of 0.02 is used for large ruminants and 0.01 for small ruminants.

 EF_{dir} = emission factor for direct nitrous oxide emissions, kg $N_2O-N\cdot$ kg N^{-1} . Default value of 0.01 is used

(0.03 for rice feed materials).

EF_{vol} = emission factor for N₂O emissions from N volatilized as NH₃ and NO_x, kg N₂O-N·kg N volatilized⁻¹.

Default value of 0.01 is used.

EF_{leach} = emission factor for N₂O emissions from leaching and runoff, kg N₂O-N·kg N leached⁻¹. Default value

of 0.0075 is used.

Frac_{vol1} = fraction of nitrogen from manure applied or deposited on crops and pastures that volatilizes as

NH₃ and NO_x, fraction. Default value of 0.1 is used.

Frac_{leach} = fraction of nitrogen lost due to leaching and runoff, fraction. Default value of 0.3 is used.

44/28 = conversion factor from N₂O-N to N₂O emissions.

6.2.2. – Nitrogen from synthetic fertilizers

Application rates of synthetic nitrogen fertilizer were defined at a national level (Section 6.1.1; LEAP, 2015). Emissions of nitrous oxide per hectare of each feed material from synthetic fertilizers are calculated using Equation 6.6:

Equation 6.6

N₂Oha_{-fert,i} = NFERTHA_i * (EF_{dir} + Frac_{vol2} * EF_{vol} + Frac_{leach} * EF_{leach}) * 44 / 28

for i = 1 and 4 from Table 3.2 (only for ruminants)

Where:

 $N_2Oha_{-fert,i}$ = total nitrous oxide emissions from application of nitrogen fertilizer per hectare of feed material i,

kg N₂O·ha⁻¹

NFERTHA_i = application rate of nitrogen fertilizer for feed material i, kg N·ha⁻¹

EF_{dir} = emission factor for direct nitrous oxide emissions, kg N₂O-N·kg N⁻¹. Default value of 0.01 is used

(0.03 for rice feed materials).

EF_{vol} = emission factor for N₂O emissions from N volatilized as NH₃ and NO_x, kg N₂O-N·kg N volatilized⁻¹.

Default value of 0.01 is used.

EF_{leach} = emission factor for N₂O emissions from leaching and runoff, kg N₂O-N·kg N leached⁻¹. Default value

of 0.0075 is used.

Frac_{vol2} = fraction of nitrogen from synthetic fertilizers or crop residues that volatilizes as NH₃ and NO_x,

fraction. Default value of 0.2 is used.

Frac_{leach} = fraction of nitrogen lost due to leaching and runoff, fraction. Default value of 0.3 is used.

44/28 = conversion factor from N₂O-N to N₂O emissions.

6.2.3. – Nitrogen release during crop residues decomposition

Nitrogen from crop residues was calculated using the crop yields and the IPCC crop residues formulae (Table 11.2, Chapter 10, Volume 4), following Equation 6.7:

Equation 6.7

 $Ncr_i = (DMYGcr_i * N_{AG,i} * (1 - FracRemove_i)) + (R_{BG-BlO,i} * (DMYGcr_{i+}DMYGcrop_{i}) * N_{BG,i})$

Where:

Ncr_i = annual amount of N in crop residues (above and below ground) of feed material i, kg N·ha⁻¹

DMYGcr_i = crop gross dry matter yield of feed material i, kg DM·ha⁻¹

 $DMYGcrop_i$ = crop residues gross dry matter yield of feed material i, kg $DM \cdot ha^{-1}$

N_{AG,i} = nitrogen content of above-ground residues for feed material *i*, kg N·kg DM⁻¹. Values are given in

Tables 6.12 and 6.13 (Supplement S1).

FracRemove_i = fraction of above-ground residues of feed material *i* removed annually for purpose such as feed,

bedding and construction, fraction. A default value of 0.45 is used with the exception of few

countries, whose values are given in Table 6.14 (Supplement S1).

R_{BG-BIO,i} = fraction of below-ground residues to above ground biomass (DMYGcr_i + DMYGcrop_i) for feed

material i, fraction. Values are given in Tables 6.12 and 6.13 (Supplement S1).

 $N_{BG,i}$ = nitrogen content of below-ground residues for feed material i, kg $N \cdot kg DM^{-1}$. Values are given in

Tables 6.12 and 6.13 (Supplement S1).

Emissions of nitrous oxide per hectare of each feed material from crop residues are then calculated using Equation 6.8:

Equation 6.8

N₂Oha-cr,i = Ncri * (EFdir + Fracvol2 * EFvol + Fracleach * EFleach) * 44 / 28

Where:

N₂Oha-cr,i = total nitrous oxide emissions from crop residues per hectare of feed material *i*, kg N₂O·ha⁻¹
Ncr_i = annual amount of N in crop residues (above and below ground) of feed material *i*, kg N·ha⁻¹

EF_{dir} = emission factor for direct nitrous oxide emissions, kg N₂O-N·kg N⁻¹. Default value of 0.01 is used

(0.03 for rice feed materials).

 $EF_{vol} \hspace{1cm} = \hspace{1cm} emission \, factor \, for \, N_2O \, emissions \, from \, N \, volatilized \, as \, NH_3 \, and \, NO_x, \, kg \, N_2O-N\cdot kg \, N \, volatilized^{-1}.$

Default value of 0.01 is used.

EF_{leach} = emission factor for N₂O emissions from leaching and runoff, kg N₂O-N·kg N leached⁻¹. Default value

of 0.0075 is used.

Frac_{vol2} = fraction of nitrogen from synthetic fertilizers or crop residues that volatilizes as NH₃ and NO_x,

fraction. Default value of 0.2 is used.

Frac_{leach} = fraction of nitrogen lost due to leaching and runoff, fraction. Default value of 0.3 is used.

44/28 = conversion factor from N₂O-N to N₂O emissions.

6.3 - METHANE EMISSIONS FROM RICE USED FOR FEED

Rice differs from all the other feed crops in that it produces significant amounts of CH₄. These emissions per hectare are highly variable and depend on the water regime during and prior to cultivation, and the nature of the organic amendments. The average CH₄ flux per hectare of rice was calculated for each country using the IPCC Tier 1 methodology as described in the Volume 4, Chapter 5.5.

<u>6.4 – GHG EMISSIONS ARISING FROM THE PRODUCTION OF NON-CROP</u> FEED MATERIALS

Default values of **1.4**, **3.6** and **0.08** kg CO₂-eq·kg.feed⁻¹ for fishmeal, synthetic additives and limestone were used, respectively. Emissions for leaves and swill were assumed to be null.

<u>6.5 – ALLOCATION OF EMISSIONS BETWEEN CROP AND CROP CO-</u>PRODUCTS

In order to calculate the emission intensity of each feed material, emissions need to be allocated between the crop and crop co-products, such as crop residues or agro-industrial by-products. To this purpose, three allocation factors are used: 1) the MFA (see Sections 3.2.1 and 3.3.1), defining the crop or co-product mass as a fraction of the total mass, 2) the Economic Fraction Allocation (EFA), which defines the crop or co-product value as a fraction of the total value and 3) the second-grade allocation (A2), to account for the low economic value of second-grade crops (feed materials 3, 6 to 14 and 17 from Table 3.14). The general equations used are as follows:

Equation 6.9

a. CO ₂ kg _{-Nfert,i}	=	CO2NFERTHAi / (DMYGcrop,i * FUEcrop,i + DMGYcr,i * FUEcr,i) * EFAi / MFAi * A2i
b. CO ₂ kg _{-Pfert,i}	=	$CO2PFERTHA_i / (DMYG_{crop,i} {}^* FUE_{crop,i} + DMGY_{cr,i} {}^* FUE_{cr,i}) {}^* EFA_i / MFA_i {}^* A2_i$
c. CO ₂ kg _{-Kfert,i}	=	$CO2KFERTHA_i / (DMYG_{crop,i * FUE_{crop,i} + DMGY_{cr,i} * FUE_{cr,i}) * EFA_i / MFA_i * A2_i}$
$d.\ CO_2kg_{\text{-pest,i}}$	=	$CO2PESTHA_i / (DMYG_{crop,i} {}^* FUE_{crop,i} + DMGY_{cr,i} {}^* FUE_{cr,i}) {}^* EFA_i / MFA_i {}^* A2_i$
e. CO ₂ kg _{-crop,i}	=	$CO2CROPha_i / (DMYG_{crop,i} * FUE_{crop,i} + DMGY_{cr,i} * FUE_{cr,i}) * EFA_i / MFA_i * A2_i$
f. CO ₂ kg _{-proc,i}	=	CO2PROCkg _i * EFA _i / MFA _i * A2 _i
g. $CO_2kg_{-LUC,i}$	=	CO_2LUCha_i / (DMYG _{crop,i} * $FUE_{crop,i}$ + DMGY _{cr,i} * $FUE_{cr,i}$) * EFA_i / MFA_i
$h.\ N_2Okg\text{-}manure,i$	=	$N_2Oha_{-manure,i} / (DMYG_{crop,i} * FUE_{crop,i} + DMGY_{cr,i} * FUE_{cr,i}) * EFA_i / MFA_i * A2_i$
i. N ₂ Okg _{-fert,i}	=	$N_2Oha_{-fert,i}$ / (DMYG _{crop,i} * FUE _{crop,i} + DMGY _{cr,i} * FUE _{cr,i}) * EFA _i / MFA _i * A2 _i
I. N ₂ Okg _{-cr,i}	=	$N_2Oha_{\text{-cr,i}} / (DMYG_{\text{crop,i}} * FUE_{\text{crop,i}} + DMGY_{\text{cr,i}} * FUE_{\text{cr,i}}) * EFA_i / MFA_i * A2_i$
m. CH₄kg _i	=	CH_4ha_i / (DMYG _{crop,i} * $FUE_{crop,i}$ + DMGY _{cr,i} * $FUE_{cr,i}$) * EFA_i / MFA_i * $A2_i$

Where:

CO2kgi-Nfert,i	=	total carbon dioxide emissions from N fertilizer manufacturing per kilogram of dry matter of feed			
		material i, kg CO ₂ ·kg DM ⁻¹			

CO₂kg_{-Pfert,i} = total carbon dioxide emissions from P fertilizer manufacturing per kilogram of dry matter of feed material *i*, kg CO₂·kg DM⁻¹

CO₂kg_{-Kfert,i} = total carbon dioxide emissions from K fertilizer manufacturing per kilogram of dry matter of feed material *i*, kg CO₂·kg DM⁻¹

CO₂kg_{-pest,i} = total carbon dioxide emissions from pesticides manufacturing per kilogram of dry matter of feed material *i*, kg CO₂·kg DM⁻¹

CO₂kg_{-crop,i} = total carbon dioxide emissions from field operations per kilogram of dry matter of feed material *i*, kg CO₂·kg DM⁻¹

CO₂kg_{-proc,i} = total carbon dioxide emissions from transport and processing per kilogram of dry matter of feed material *i*, kg CO₂·kg DM⁻¹

CO₂kg_{-LUC,i} = total carbon dioxide emissions from land-use change per kilogram of dry matter of feed material *i*, kg CO₂·kg DM⁻¹

 $N_2Okg_{i-manure,i}$ = total nitrous oxide emissions from manure application or deposition per kilogram of dry matter of feed material i, kg $N_2O\cdot$ kg DM^{-1}

N₂Okg_{i-fert,i} = total nitrous oxide emissions from application of nitrogen fertilizer per kilogram of dry matter of feed material *i*, kg N₂O·kg DM⁻¹

N₂Okg_{i-cr,i} = total nitrous oxide emissions from crop residues per kilogram of dry matter of feed material *i*, kg N₂O·kg DM⁻¹

CH₄kg_i = total methane emissions per kilogram of dry matter of feed material *i*, kg CH₄·kg DM⁻¹

CO2NFERTHA_i = carbon dioxide emissions from N fertilizer manufacturing per hectare of feed material *i*, kg CO₂·ha⁻¹.

Described in section 6.1.1

CO2PFERTHA_i = carbon dioxide emissions from P fertilizer manufacturing per hectare of feed material i, kg $CO_2 \cdot ha^{-1}$.

Described in section 6.1.1

CO2KFERTHA_i = carbon dioxide emissions from K fertilizer manufacturing per hectare of feed material *i*, kg CO₂·ha⁻¹.

Described in section 6.1.1

CO2PESTHA_i = carbon dioxide emissions from pesticides manufacturing per hectare of feed material *i*, kg CO₂·ha⁻¹.

Described in section 6.1.1

CO2CROPha_i = carbon dioxide emissions from field operations per hectare of feed material *i*, kg CO₂-ha⁻¹. Described in section 6.1.2

CO2PROCkg_i = carbon dioxide emissions from transport and processing per kg of parental crop of feed material *i*, kg CO₂·kg DM ⁻¹. Described in section 6.1.3

CO₂LUCha_i = carbon dioxide emissions from land-use change per hectare of feed material *i*, kg CO₂·ha⁻¹. Described in sections 6.1.5 and 6.1.6

 N_2 Oha-manure,i = total nitrous oxide emissions from manure application or deposition per hectare of feed material i, kg N_2 O·ha⁻¹. Described in section 6.2.1

 $N_2Oha_{-fert,i}$ = total nitrous oxide emissions from application of nitrogen fertilizer per hectare of feed material i, kg $N_2O\cdot ha^{-1}$. Described in section 6.2.2

N₂Oha-cr,i = total nitrous oxide emissions from crop residues per hectare of feed material *i*, kg N₂O·ha⁻¹. Described in

section 6.2.3

CH₄ha_i = total methane emissions per hectare of feed material *i*, kg CH₄·ha⁻¹. Described in section 6.3

DMYG_{crop,i} = crop gross dry matter yield for feed material *i*, kg DM·ha⁻¹

DMGY_{cr,i} = crop residues gross dry matter yield for feed material i, kg DM·ha⁻¹

FUE_{crop,i} = crop feed use efficiency for feed material *i*, i.e. fraction of the gross yield of the crop that is effectively used as feed, fraction. Values are given in Tables 6.13 and 6.14 for ruminant and monogastric species,

respectively.

FUE_{cr,i} = crop residues feed use efficiency for feed material *i*, i.e. fraction of the gross yield of the crop residues that is effectively used as feed, fraction. Values are given in Tables 6.13 and 6.14 for ruminant and

monogastric species, respectively.

EFA_i = economic fraction allocation, i.e. crop or co-product value as a fraction of the total value (of the crop and co-product) for feed material *i*, fraction. Values are given in Tables 6.13 and 6.14 for ruminant and

monogastric species, respectively.

MFA_i = mass fraction allocation, i.e. crop or co-product mass as a fraction of the total mass (crop and coproduct) for feed material *i*, fraction. Values are given in Tables 3.4 and 3.15 for ruminant and

monogastric species, respectively.

A2i = second-grade allocation, i.e. ratio of the economic value of second-grade crop to the economic value of its first-grade equivalent for feed material *i* (applied only in backyard systems for monogastric species to

feed materials 3, 6 to 14 and 17 from Table 3.14), fraction. Default value of 0.2 is used.

For most of the feed materials, the default MFA factors are shown in Tables 3.4 (for ruminant species) and 3.15 (for monogastric species). For crop residues or grains (whose crop residues are used either as feed or for bedding), dry matter yields and FUE are used to determine the MFA factors, as shown in Equation 6.10.a (for crop residues) and 6.10.b (for grains):

Equation 6.10

a. $MFA_{,i} = (DMGY_{cr,i} * FUE_{cr,i})/(DMYG_{crop,i} * FUE_{crop,i} + DMGY_{cr,i} * FUE_{cr,i})$

for i = 9 to 15 from Table 3.2 (for ruminant species)

for i = 4, 13 and 16 from Table 3.14 (for monogastric species)

b. MFA,i = (DMGY_{crop,i} * FUE_{crop,i})/ (DMYG_{crop,i} * FUE_{crop,i} + DMGY_{cr,i} * FUE_{cr,i})

for i = 3, 6 to 11, 15, 21, 23, and 25 to 28 from Table 3.14

Where:

MFAi = mass fraction allocation, i.e. crop or crop residues mass as a fraction of the total mass (crop and crop

residues) for feed material i, fraction

DMYG_{crop,i} = crop gross dry matter yield for feed material i, kg DM·ha⁻¹

DMGY_{cr,i} = crop residues gross dry matter yield for feed material i, kg DM·ha⁻¹

FUE_{crop,i} = crop feed use efficiency for feed material *i*, i.e. fraction of the gross yield of the crop that is effectively

used as feed, fraction. Values are given in Tables 6.13 and 6.14 for ruminant and monogastric species,

respectively.

FUE_{cr,i} = crop residues feed use efficiency for feed material *i*, i.e. fraction of the gross yield of the crop residues

that is effectively used as feed, fraction. Values are given in Tables 6.13 and 6.14 for ruminant and

monogastric species, respectively.

If no crop residues are used for feed or bedding, dry matter yield and mass fraction allocation of the residues are assumed to be zero, effectively allocating 100% of the emissions to the crop. As for MFA, the EFA factors are default values for many feed materials (Tables 6.15 and 6.16 for ruminant and monogastric species, respectively), but for grains and crop residues they are calculated as follows:

Equation 6.11

a. $EFA_{,i}$ = $(DMGY_{cr,i} * FUE_{cr,i} * VR_{cr,i})/(DMYG_{crop,i} * FUE_{crop,i} * VR_{crop,i} * DMGY_{cr,i} * FUE_{cr,i} * VR_{cr,i})$

for i = 9 to 15 from Table 3.2 (for ruminant species)

for i = 4, 13 and 16 from Table 3. 14 (for monogastric species)

b. EFA,i = (DMGYcrop,i * FUEcrop,i * VRcrop,i)/ (DMYGcrop,i * FUEcrop,i * VRcrop,i + DMGYcr,i * FUEcr,i * VRcr,i)

for i = 3, 6 to 11, 15, 21, 23, and 25 to 28 from Table 3. 14

Where:

EFAi = economic fraction allocation, i.e. crop or crop residues value as a fraction of the total value (of the crop

and crop residues) for feed material i, fraction

DMYG_{crop,i} = crop gross dry matter yield for feed material *i*, kg DM·ha⁻¹

DMGY_{cr,i} = crop residues gross dry matter yield for feed material i, kg DM·ha⁻¹

FUE_{crop,i} = crop feed use efficiency for feed material *i*, i.e. fraction of the gross yield of the crop that is effectively

used as feed, fraction. Values are given in Tables 6.13 and 6.14 for ruminant and monogastric species,

respectively.

FUE_{cr,i} = crop residues feed use efficiency for feed material i, i.e. fraction of the gross yield of the crop residues

that is effectively used as feed, fraction. Values are given in Tables 6.13 and 6.14 for ruminant and

monogastric species, respectively.

VR_{crop,i} = value ratio of the crop per mass unit of crop and crop residues for feed material *i*, fraction. The price

ratio can be used, if available. Otherwise, the digestibility of crop and crop residues can be used as a proxy of their respective value. Values are given in Tables 6.13 and 6.14 for ruminant and monogastric

species, respectively.

VR_{cr,i} = value ratio of the crop residues per mass unit of crop and crop residues for feed material *i*, fraction. The

price ratio can be used, if available. Otherwise, the digestibility of crop and crop residues can be used as a proxy of their respective value. Values are given in Tables 6.13 and 6.14 for ruminant and monogastric

species, respectively.

An allocation factor of 0.2 (A2 in Equation 6.9) is used for second-grade crops, effectively reducing the emissions associated to their production in a roughly proportionate way to their economic value. Clearly, the relative value could potentially vary for different crops and locations depending on supply and demand, or the extent to which there is a market for second-grade crops and the price of alternative feedstuffs.

TABLE 6.15. Parameters for allocation of emissions to feed materials of ruminant species

Number	Material	FUE _{crop}	FUE _{cr}	EFA	VR _{crop}	VR _{cr}		
Roughages								
1	GRASSF	Table 3.5 (Supplement S1) ^a	NA	1	NA	NA		
2	GRASSH	Table 3.5 (Supplement S1) ^a	NA	1	NA	NA		
3	GRASSH2	Table 3.5 (Supplement S1) ^a	NA	1	NA	NA		
4	GRASSLEGF	Table 3.5 (Supplement S1) ^a	NA	1	NA	NA		
5	GRASSLEGH	Table 3.5 (Supplement S1) ^a	NA	1	NA	NA		
6	ALFALFAH	Table 3.5 (Supplement S1) ^a	NA	1	NA	NA		
7	GRAINSIL	1	NA	1	NA	NA		
8	MAIZESIL	1	NA	1	NA	NA		
9	RSTRAW	1	Table 3.5 (Supplement S1) ^a	Equation 6.11a	0.66	0.34		
10	WSTRAW	1	Table 3.5 (Supplement S1) ^a	Equation 6.11a	0.67	0.33		
11	BSTRAW	1	Table 3.5 (Supplement S1) ^a	Equation 6.11a	0.67	0.33		
12	ZSTOVER	1	Table 3.5 (Supplement S1) ^a	Equation 6.11a	0.61	0.39		
13	MSTOVER	1	Table 3.5 (Supplement S1) ^a	Equation 6.11a	0.63	0.37		
14	SSTOVER	1	Table 3.5 (Supplement S1) ^a	Equation 6.11a	0.63	0.37		
15	TOPS	1	Table 3.5 (Supplement S1) ^a	Equation 6.11a	0.55	0.45		
16	LEAVES	Table 3.4	NA	1	NA	NA		
17	FDDRBEET	Table 3.4	NA	1	NA	NA		
Cereals								
18	GRAINS	Table 3.4	NA	1	NA	NA		
19	CORN	Table 3.4	NA	1	NA	NA		
By-produc	ts							
20	MLSOY	Table 3.4	NA	0.72	NA	NA		
21	MLRAPE	Table 3.4	NA	0.28	NA	NA		
22	MLCTTN	Table 3.4	NA	0.23	NA	NA		
23	PKEXP	Table 3.4	NA	0.01	NA	NA		
24	MZGLTM	Table 3.4	NA	0.10	NA	NA		
25	MZGLTF	Table 3.4	NA	0.06	NA	NA		
26	BPULP	Table 3.4	NA	0.11	NA	NA		
27	MOLASSES	Table 3.4	NA	0.06	NA	NA		
28	GRNBYDRY	Table 3.4	NA	0.04	NA	NA		
29	GRNBYWET	Table 3.4	NA	0.08	NA	NA		

^a For these feed materials the FUE is spatially explicit.

TABLE 6.16. Parameters for allocation of emissions to feed materials of monogastric species

TABLE 6.16. Parameters for allocation of emissions to feed materials of monogastric species								
Number	Material	FUE _{crop}	FUE _{cr}	EFA	VR _{crop}	VR _{cr}		
Swill and s	Swill and scavenging							
1	SWILL	Table 3.15	NA	1	NA	NA		
Locally-pro	Locally-produced feed materials							
2	GRASSF	Table 3.15	NA	1	NA	NA		
3	PULSES	Table 3.15	0.90	Equation 6.11b	0.67	0.33		
4	PSTRAW	1	Table 3.15	Equation 6.11a	0.67	0.33		
5	CASSAVA	Table 3.15	NA	1	NA	NA		
6	WHEAT	Table 3.15	0.70a	Equation 6.11b	0.67 ^c	0.33 ^d		
7	MAIZE	Table 3.15	0.70 ^b	Equation 6.11b	0.62 ^e	0.38 ^f		
8	BARLEY	Table 3.15	0.90	Equation 6.11b	0.80	0.20		
9	MILLET	Table 3.15	0.70	Equation 6.11b	0.61	0.39		
10	RICE	Table 3.15	0.70	Equation 6.11b	0.68	0.32		
11	SORGHUM	Table 3.15	0.70	Equation 6.11b	0.61	0.39		
12	SOY	Table 3.15	NA	1	NA	NA		
13	TOPS	1	Table 3.15	Equation 6.11a	0.52	0.48		
14	LEAVES	NA	NA	NA	NA	NA		
15	BNFRUIT	Table 3.15	0.50	Equation 6.11b	0.67	0.33		
16	BNSTEM	1	Table 3.15	Equation 6.11a	0.67	0.33		
17	MLSOY	Table 3.15	NA	0.72	NA	NA		
18	MLCTTN	Table 3.15	NA	0.30	NA	NA		
19	MLOILSDS	Table 3.15	NA	0.23	NA	NA		
20	GRNBYDRY	Table 3.15	NA	0.04	NA	NA		
Non-local f	feed materials							
21	PULSES	Table 3.15	0	Equation 6.11b	0.67	0.33		
22	CASSAVA	Table 3.15	NA	1	NA	NA		
23	WHEAT	Table 3.15	0.90	Equation 6.11b	0.80	0.20		
24	MAIZE	Table 3.15	NA	1	NA	NA		
25	BARLEY	Table 3.15	0.90	Equation 6.11b	0.80	0.20		
26	MILLET	Table 3.15	0.90	Equation 6.11b	0.80	0.20		
27	RICE	Table 3.15	0.90	Equation 6.11b	0.80	0.20		
28	SORGHUM	Table 3.15	0.90	Equation 6.11b	0.80	0.20		
29	SOY	Table 3.15	NA	1	NA	NA		
30	RAPESEED	Table 3.15	NA	1	NA	NA		
31	SOYOIL	Table 3.15	NA	0.27	NA	NA		
32	MLSOY	Table 3.15	NA	0.72	NA	NA		
33	MLCTTN	Table 3.15	NA	0.23	NA	NA		
34	MLRAPE	Table 3.15	NA	0.28	NA	NA		
35	PKEXP	Table 3.15	NA	0.01	NA	NA		
36	MLOILSDS	Table 3.15	NA	0.28	NA	NA		
37	FISHMEAL	NA	NA	NA	NA	NA		
38	MOLASSES	Table 3.15	NA	0.06	NA	NA		
39	GRNBYDRY	Table 3.15	NA	0.04	NA	NA		
40	GRNBYWET	Table 3.15	NA	0.08	NA	NA		
41	SYNTHETIC	NA	NA	NA	NA	NA		
42	LIMESTONE	NA	NA	NA	NA	NA		

^a The value is 0.90 for industrialized countries.

^b The value is null for industrialized countries.

 $^{^{\}mbox{\tiny c}}$ The value is 0.80 for industrialized countries.

^d The value is 0.20 for industrialized countries.

 $^{^{\}rm e}\,\mbox{The}$ value is 1 for industrialized countries.

^f The value is null for industrialized countries.

6.6 - EMISSIONS FROM FEED CONSUMPTION

Before totalizing emissions at herd or flock level (see Section 6.7), emissions related to feed consumption must be totalized by cohort. This is done by combining the emissions for each feed material (see Section 6.5.) and the average feed dry matter intake per animal of each cohort (see Section 3.6) as shown in Equation 6.12.

Equation 6.12

a. $CO_{2-Feed,T,c}$ = $365 * N_{T,c} * DMI_{T,c} * \sum_{i}(CO_{2}kg_{-blend,i,c,T} + (CO_{2}kg_{-Nfert,i} + CO_{2}kg_{-Pfert,i} + CO_{2}kg_{-Kfert,i} + CO_{2}kg_{-pest,i} + CO_{2}kg_{-crop,i} + CO_{2}kg_{-proc,i} + CO_{2}kg_{-non-crop,i}) * FEED_{i,T,c})$ b. $CO_{2-Feed-LUC,T,c}$ = $365 * N_{T,c} * DMI_{T,c} * \sum_{i}(CO_{2}kg_{-LUC,i} * FEED_{i,T,c})$ c. $N_{2}O_{-Feed-man,T,c}$ = $365 * N_{T,c} * DMI_{T,c} * \sum_{i}(N_{2}Okg_{-manure,i} * FEED_{i,T,c})$ d. $N_{2}O_{-Feed-fr&cr,T,c}$ = $365 * N_{T,c} * DMI_{T,c} * \sum_{i}((N_{2}Okg_{-fert,i} + N_{2}Okg_{-cr,i}) * FEED_{i,T,c})$ e. $CH_{4-Feed,T,c}$ = $365 * N_{T,c} * DMI_{T,c} * \sum_{i}(CH_{4}kg_{i} * FEED_{i,T,c})$

Where:

 $CO_{2\text{-Feed},T,c}$ = carbon dioxide emissions from energy use associated with feed consumption of cohort c, species and system T, kg CO_2 -year⁻¹

CO_{2-Feed-LUC,T,c} = carbon dioxide emissions from land-use change associated with feed consumption of cohort *c*, species and system *T*, kg CO₂-year⁻¹

N₂O_{-Feed-man,T,c} = nitrous oxide emissions from manure application or deposition associated with feed consumption of cohort *c*, species and system *T*, kg CO₂·year⁻¹

N₂O_{-Feed-fr&cr,T,c} = nitrous oxide emissions from nitrogen fertilizer and crop residues associated with feed consumption of cohort *c*, species and system *T*, kg CO₂·year⁻¹

CH_{4-Feed,T,c} = methane emissions from feed consumption of cohort *c*, species and system *T*, kg CO₂·year⁻¹

 $N_{T,c}$ = number of animals in cohort c, species and system T, head

DMI_{T,c} = daily feed intake per animal in cohort c for species and system T, kg DM·head⁻¹·day⁻¹ FEED_{i,T,c} = fraction of feed material i in the ration of cohort c, species and system T, fraction

CO₂kg_{-blend,i,c,T} = total carbon dioxide emissions from blending and transport of concentrate feed per kg of dry matter for feed material *i*, cohort *c*, species and system *T*, kg CO₂·kg DM⁻¹. Described in section 6.1.4

CO₂kg_{i-Nfert,i} = total carbon dioxide emissions from N fertilizer manufacturing per kilogram of dry matter of feed material *i*, kg CO₂·kg DM⁻¹

CO₂kg_{-Pfert,i} = total carbon dioxide emissions from P fertilizer manufacturing per kilogram of dry matter of feed material *i*, kg CO₂·kg DM⁻¹

CO₂kg_{-Kfert,i} = total carbon dioxide emissions from K fertilizer manufacturing per kilogram of dry matter of feed material *i*, kg CO₂·kg DM⁻¹

CO₂kg_{-pest,i} = total carbon dioxide emissions from pesticides manufacturing per kilogram of dry matter of feed material *i*, kg CO₂·kg DM⁻¹

 CO_2 kg- $_{crop,i}$ = total carbon dioxide emissions from field operations per kilogram of dry matter of feed material i, kg CO_2 -kg DM^{-1}

CO₂kg_{-proc,i} = total carbon dioxide emissions from transport and processing per kilogram of dry matter of feed material *i*, kg CO₂·kg DM⁻¹

 CO_2 kg-non-crop,i = total carbon dioxide emissions from the production of non-crop feed material *i* per kg of dry matter, kg CO_2 ·kg DM^{-1} . Described in section 6.5

CO₂kg_{-LUC,i} = total carbon dioxide emissions from land-use change per kilogram of dry matter of feed material *i*, kg CO₂·kg DM⁻¹

 $N_2Okg_{i-manure,i}$ = total nitrous oxide emissions from manure application or deposition per kilogram of dry matter of feed material i, kg $N_2O\cdot$ kg DM^{-1}

 $N_2Okg_{i-fert,i}$ = total nitrous oxide emissions from application of nitrogen fertilizer per kilogram of dry matter of feed material i, kg $N_2O\cdot$ kg DM^{-1}

 $N_2Okg_{i-cr,i}$ = total nitrous oxide emissions from crop residues per kilogram of dry matter of feed material i, kg $N_2O\cdot$ kg DM^{-1}

CH₄kg_i = total methane emissions per kilogram of dry matter of feed material i, kg CH₄⋅kg DM⁻¹

90

^f Methane emissions related to feed (due to emission from paddy rice cultivation) are only applicable to monogastric species.

6.7 - TOTALIZING EMISSIONS AT HERD OR FLOCK LEVEL

The last step of the feed emission module is to totalize, for the entre herd or flock, the emissions related to feed consumption.

Equation 6.13

 $\begin{array}{lll} a. & CO_{2\text{-Feed,T}} & = & \sum_{c}(CO_{2\text{-Feed,T,c}}) \\ b. & CO_{2\text{-Feed-LUC,T}} & = & \sum_{c}(CO_{2\text{-Feed-LUC,T,c}}) \\ c. & N_{2}O_{\text{-Feed-man,T}} & = & \sum_{c}(N_{2}O_{\text{-Feed-man,T,c}}) \\ d. & N_{2}O_{\text{-Feed-fr\&cr,T}} & = & \sum_{c}(N_{2}O_{\text{-Feed-fr\&cr,T,c}}) \\ e. & CH_{4\text{-Feed,T}} & = & \sum_{c}(CH_{4\text{-Feed,T,c}})^g \end{array}$

Where:

CO_{2-Feed,T} = total carbon dioxide emissions from energy use associated with feed consumption of species and system

T, kg CO₂·year⁻¹

CO_{2-Feed-LUC,T} = total carbon dioxide emissions from land-use change associated with feed consumption of species and

system *T*, kg CO₂·year⁻¹

N₂O_{-Feed-man,T} = total nitrous oxide emissions from manure application or deposition associated with feed consumption

of species and system T, kg N₂O·year⁻¹

N₂O_{-Feed-fr&cr,T} = total nitrous oxide emissions from nitrogen fertilizer and crop residues associated with feed

consumption of species and system T, kg N₂O·year⁻¹

CH_{4-Feed,T} = total methane emissions from feed consumption of species and system T, kg CH₄-year⁻¹

 $CO_{2\text{-Feed},T,c}$ = carbon dioxide emissions from feed consumption of cohort c, species and system T, kg $CO_{2\text{-year}^{-1}}$

CO_{2-Feed,T,c} = carbon dioxide emissions from land-use change associated with feed consumption of cohort c, species

and system T, kg CO₂·year⁻¹

N₂O_{-Feed-man,T,c} = nitrous oxide emissions from manure application or deposition associated with feed consumption of

cohort c, species and system T, kg CO₂·year⁻¹

N₂O_{-Feed-fr&cr,T,c} = nitrous oxide emissions from nitrogen fertilizer and crop residues associated with feed consumption of

cohort c, species and system T, kg CO₂·year⁻¹

CH_{4-Feed,T,c} = methane emissions from feed consumption of cohort c, species and system T, kg CO₂·year⁻¹

^g Methane emissions related to feed (due to emission from paddy rice cultivation) are only applicable to monogastric species.

CHAPTER 7 – EMISSIONS FROM ENERGY USE

This chapter presents the approach and coefficients applied in GLEAM for estimating the GHG emissions from the direct, non-feed related on-farm energy use and embedded energy in farm buildings and equipment.

7.1 – EMISSIONS FROM CAPITAL GOODS – INDIRECT ENERGY USE

Capital goods including machinery, tools and equipment, buildings such animal housing, forage and manure storage are a means of production. Though not often considered in LCAs, capital goods carry with them embodied emissions associated with manufacture and maintenance. These emissions are primarily caused by the energy used to extract and process typical materials that make up capital goods such as steel, concrete or wood. The quantification of embedded energy in capital goods covered in GLEAM includes farm buildings (animal housing, feed and manure storage facilities) and farm equipment such as milking and cooling equipment, tractors and irrigation systems. To determine the effective annual energy requirement, the total embodied energy of the capital energy inputs are discounted and a 20 years straight-line depreciation for buildings, 10 years for machinery and equipment and 30 years for irrigation systems are assumed.

For ruminant species, different levels of housing are defined with varying degrees of quality. In a further step, these types are distributed across the production systems (grassland and mixed), AEZs (arid, humid and temperate), and country grouping based on the level of economic development based on literature research and expert knowledge. Tables 7.1 and 7.2 (Supplement S1) present the average emission factors for ruminant species.

For monogastric species, three different levels of housing were defined with varying degrees of quality. Emissions related to each type were calculated using the embodied energy use from the Swiss Centre for Life Cycle Inventories database – EcoInvent. Tables 7.3 and 7.4 (Supplement S1) present the average emission factors for pigs and chickens, respectively.

7.2 – EMISSIONS RELATED TO ON-FARM ENERGY USE – DIRECT ENERGY USE

Direct on-farm energy includes the emissions arising from energy use on-farm required for livestock production. Energy that is used in feed production and transport is not included, as these emissions are included in the feed category. Energy is required for a variety of purposes such as lighting, ventilation, washing, cooling, heating, milking, etc. Tables 7.5 to 7.7 (Supplement S1) present emission factors from direct energy use based on literature research and existing databases.

CHAPTER 8 – POST-FARM EMISSIONS

GLEAM covers the emissions from post-farm gate activities as part of livestock supply chains. These activities comprise four stages: transport of raw livestock commodities (meat, milk and eggs) to a processing center, processing of raw commodities into livestock products, packaging and transport to retail point.

8.1 – EMISISONS FROM TRANSPORT

The food sector is transport-intensive – large quantities of food are transported in large volumes and over long distances. This transport can sometimes be of significance but, in terms of the overall contribution to the life cycle carbon footprint of a product, most LCA studies have found that the contribution of transport is relatively small. The carbon implications of food transport is not only a question of distance. A number of other variables, such as transport mode, efficiency of transport loads and the condition of infrastructure (road quality), fuel type, etc., are important determinants of the carbon intensity of products.

Emissions related to transport were estimated for the different phases, that is: transportation of fresh products (raw milk, animals and eggs) to processing plants and from processing plants to retail centers. In the case of international trade, emissions were calculated for transport from slaughter plant to the port of export, from there to the port of import, and finally from the port of import to the retail point for distribution.

Emissions from transporting animal products to processing plants or from processing plants to retail points are calculated following Equation 8.1.

Equation 8.1

 $EFTRANS_{FP} = D_{FP} * EF_{mode}$

Where:

EFTRANS_{FP} = emission factor for product transport, kg CO₂-eq·kg CW⁻¹ / kg CO₂-eq·kg milk⁻¹/ kg CO₂-eq·kg egg⁻¹

D_{FP} = average distance between the farm and the slaughter plant or from processing plants to retail points,

km

EF_{mode} = emission factor of transport mode, kg CO₂-eq·kg CW⁻¹ / kg CO₂-eq·kg milk⁻¹/ kg CO₂-eq·kg egg⁻¹

Due to the complexity of movements and data limitations, several simplifications and assumptions were made for the different commodities.

8.1.1 - Transport of animals to slaughter plants

Animals transported to slaughter plants: not all animals produced are slaughtered in slaughter plants/abattoirs: slaughtering may also take place on-farm or may be carried out by local butchers within the vicinity of production. For industrialized countries, it was assumed that 98% of the animals are slaughtered in slaughterhouses. In developing countries, the share of animals transported to slaughter plants varied between 15 and 75% based on the assumption that slaughtering infrastructure is generally lacking and that animals are often slaughtered in closer proximity to where they are raised, with slaughter being carried out by local butchers or household slaughter. Other factors taken into consideration include the importance of exports within the economy, where we assumed that key exporting developing countries such as Brazil, Argentina, Paraguay, Botswana and Namibia would have a higher share of animals slaughtered in slaughter plants.

Average distance between farm and slaughter plant: data on distances between farms and slaughter plants were taken from literature for industrialized regions: an average of 80 km for Europe and 200 km for North America. In developing countries it was assumed that slaughter takes place within 50 km on average.

Emission intensity: based on secondary data, 0.21 and 0.38 kg CO₂-eq·tonne CW⁻¹·km⁻¹ emission factors were used for industrialized and developing countries, respectively.

8.1.2 - Transport of milk to processing plants

The proportion of milk processed in dairy plants varies by region. In industrialized countries, 95 to 100% of the milk is transported to a dairy plant for processing, while other region present much lower percentages. An average distance of 50 km from farm to processing plant was assumed. An emission factor of $1.8 \cdot 10^{-4}$ kg CO₂-eq·kg raw milk⁻¹·km⁻¹ was used (FAO, 2013a).

8.1.3 - Transport of eggs to grading plants

Country-specific data on the importance of grading was taken from literature review and expert consultation. Average distances of 50 to 200 km from farm to grading plants for developing and industrialized countries were assumed. Based on secondary data, an average of 0.20 kg CO₂-eq·tonne eggs⁻¹·km⁻¹ was adopted as the emission intensity for transportation (SIK, 2010).

8.1.4 - Transport of processed meat to retail points

Transport and distribution emissions sources comprise emissions from fuel combustion during transport, as well as emissions from energy consumption for refrigeration and refrigerant leakage from chilled vehicles or container ships. Two modes of transport were considered in this phase: refrigerated road transport and marine transport. Refrigerated road transport covered here refers to transport between the processing plant and the domestic market and, in the case of international trade, transport from plant to port and entry port to retail distribution center in importing country. Emission intensities of 0.18 and 0.20 kg CO₂-eq·tonne carcass⁻¹·km⁻¹ were estimated for chilled and frozen transportation. Emissions from the international trade of meat were calculated on the basis of the amount and type of product traded, distances between the slaughterhouse and retail center, and the average GHG emission per kg of product transported. Based on secondary data, average emissions of 0.025 and 0.05 kg CO₂-eq·tonne carcass⁻¹·km⁻¹ for large and small container ships transporting carcasses were used.

8.1.5 - Transport of processed milk to retail points

The transportation of processed milk takes into account the international trade of powdered milk. Detailed international trade data was retrieved from FAOSTAT to identify the main exporters and importers of powdered milk. Transport distances were estimated for road and vessel transport using online tools such as Sea Distances website (https://sea-distances.org/). Average emission intensities of 0.07, 0.03 and 0.02 kg CO₂-eq·tonne powdered milk⁻¹·km⁻¹ for road transport, small and large container ship were used.

8.2 – PROCESSING AND PACKAGING

Energy consumption is the most important source of GHG emissions from the post-farm gate supply food chain. Table 8.1 (Supplement S1) presents average regional and country CO_2 emission coefficients applied in this analysis. CO_2 intensities are determined by the composition of the energy sources employed and average GHG emissions from electricity consumption was modelled as a mix of existing electricity sources (e.g. coal, hydro, nuclear, oil, etc.) in different countries and regions taken from the International Energy Agency (IEA, 2013).

Based on literature, available databases (such as EcoInvent) and personal communications, data on energy consumption related to animal products processing and packaging were collected (Table 8.2; Supplement S1). These were combined with the data from the IEA to estimate the emissions caused by the processing and packaging of meat, milk and eggs. Emission factors per kilogram of product are estimated using the values from Tables 8.1 and 8.2 for both processing and packaging.

Equation 8.2

a. EFPROCC = $EF_{energy} * EC_{PROC}$ b. EFPACK = $EF_{energy} * EC_{PACK}$

where:

EFPROC = emission factor for processing, kg CO₂-eq·kg CW⁻¹ / kg CO₂-eq·kg milk⁻¹ / kg CO₂-eq·kg egg⁻¹ EFPACK = emission factor for packaging, kg CO₂-eq·kg CW⁻¹ / kg CO₂-eq·kg milk⁻¹ / kg CO₂-eq·kg egg⁻¹

EF_{energy} = emission factor for energy consumption, kg CO₂-eq ·MJ⁻¹. Values are given in Table 8.1 (Supplement S1) EC_{PROC} = energy consumption for processing, MJ·kg CW-1 / MJ·kg milk-1 / MJ·kg egg-1. Values are given in Table

8.2 (Supplement S1)

ECPACK = energy consumption for packaging, MJ·kg CW-1 / MJ·kg milk-1/ MJ·kg egg-1. Values are given in Table

8.2 (Supplement S1)

8.3 - TOTAL POST-FARM EMISSION FACTORS

Total emission factors from post-farm are calculated using Equation 8.3.

Equation 8.3

EFPF = EFTRANS_{FP} + EFPROCC + EFPACK

Where:

EFPF = post-farm emission factor, kg CO₂-eq·kg CW⁻¹ / kg CO₂-eq·kg milk⁻¹/ kg CO₂-eq·kg egg⁻¹

EFTRANS_{FP} = emission factor for product transport, kg CO₂-eq·kg CW⁻¹ / kg CO₂-eq·kg milk⁻¹ / kg CO₂-eq·kg egg⁻¹

EFPROC = emission factor for processing, kg CO₂-eq·kg CW⁻¹ / kg CO₂-eq·kg milk⁻¹/ kg CO₂-eq·kg egg⁻¹ EFPACK = emission factor for packaging, kg CO₂-eq·kg CW⁻¹ / kg CO₂-eq·kg milk⁻¹/ kg CO₂-eq·kg egg⁻¹

Final post-farm emissions are associated with animal commodities as depicted in Section 9.2.

CHAPTER 9 – ALLOCATION MODULE

One of the principles of LCA methodology is to allocate emissions among different products and outputs. The approach used in GLEAM to allocate emissions is described in the following sections.

The functions of the 'Allocation' module are:

- Calculate the total livestock production;
- Calculate the **total emissions** and the **emission intensity** of each commodity.

For a schematic representation of the allocation module, see Figures 9.1 and 9.2,

Figure 9.1 – Schematic representation of the allocation module for ruminant species

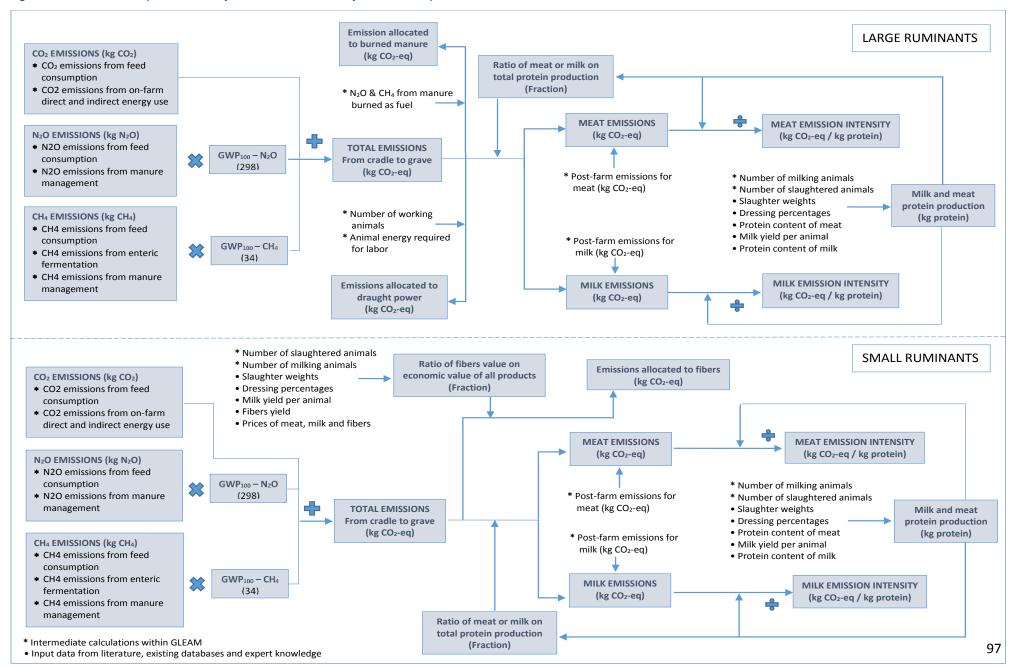
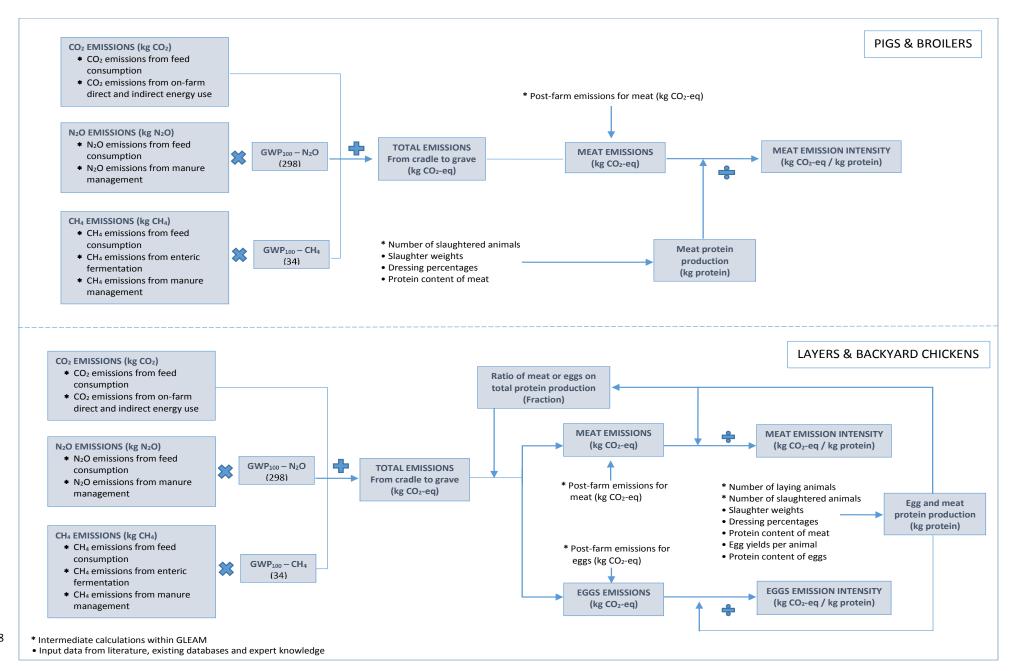



Figure 9.2 – Schematic representation of the allocation module for monogastric species

9.1 - TOTAL LIVESTOCK PRODUCTION

This section describes the equations used to calculate the total amount of animal commodities produced by each species and production system, namely meat, milk, eggs and fibre. All commodities, except fibre, are expressed in terms of protein to allow emission intensities comparison and aggregation between them.

9.1.1 – Production of milk

Total milk production is calculated based on average milk production per animal and number of milking animals. Total milk is then converted into amount of protein.

Equation 9.1

 $MILKTOT_{prot,T} = AF_T * MILK_{yield,T} * MILK_{prot,T}$

Where:

 $MILKTOT_{prot,T}$ = total amount of milk protein produced by species and production system T, kg protein·year⁻¹

 AF_T = milking animals by species and production system T, heads

MILK_{yield,T} = average milk production per milking animal of species and production system *T*, kg milk·head⁻¹·year⁻¹

MILK_{prot,T} = average milk protein content of species and production system *T*, fraction

9.1.2 - Production of meat

Total meat production is calculated from the total number of animals that leave the herd for slaughter and average live weights. Live weight production is then expressed in total amount of protein using dressing percentage data, bone-free-meat to carcass weight ratio and average protein content in meat.

Equation 9.2

 $MEATTOT_{prot,T} = BFM_T * MEAT_{prot,T} * \sum_{c} (N_{exit,T,c} * LW_{,T,c} * DP_T / 100)$

Where:

 $MEATTOT_{prot,T}$ = total amount of meat protein produced by species and production system T, kg protein

BFM_T = bone-free-meat to carcass weight ratio for species and production system *T*, fraction. Values are shown

in Table 9.1.

 $MEAT_{prot,T}$ = average fraction of protein in meat of species and production system T, fraction. Values are shown in

Table 9.1.

 $N_{\text{exit},T,c}$ = number of animals slaughtered by species and production system T and cohort c, # animals

 $LW_{,T,c}$ = live weight of slaughtered animals by species and production system T and cohort c, kg LW-animal

¹-vear-¹

DP_T = dressing percentage of species and production system *T*, percentage. Values are given in Table 9.2

(Supplement S1).

TABLE 9.1. Bone-free-meat to carcass weight ratio and protein content

Species	BFM (fraction)	MEAT _{prot} (kg protein·kg meat ⁻¹)
Large ruminants	0.75	0.2113
Sheep	0.70	0.2013
Goats	0.70	0.1920
Pigs	0.65	0.2020
Chicken	0.75	0.1900

9.1.3 – Production of eggs

Total egg production is calculated from the backyard and layer systems exclusively following Equation 9.3.

Equation 9.3

EGGTOT_{prot,T} = 10³ * EGG_{prot} * EGGwght_T * EGGSyear_T * N_{Hens,T}

Where:

EGGTOT_{prot,T} = total amount of egg protein produced by production system *T*, kg protein·year⁻¹ = average protein fraction in eggs, fraction. Default value of 0.1240 was used.

EGGwght_T = average egg weight for production system T, $g \cdot egg^{-1}$

EGGSyear_T = annual laid eggs per hen per production system T, # eggs·hen⁻¹·year⁻¹

 $N_{Hens,T}$ = number of laying hens in production system T, # animals

9.1.4 - Production of fibre

The production of fibers comprises three fibers: wool for sheep; cashmere and mohair for goats. Their total production is calculated combining the number of reproductive and surplus animals producing fibre with the yield of product per animal from FAOSTAT.

It is assumed that all reproductive and surplus animals produce wool, as shown in Equation 9.4.

Equation 9.4 - Wool

WOOLTOT,T = WOOLyield,T * $\sum c (N_{T,c})$

Where:

WOOLTOT, T = total amount of wool produced by system T, kg·year⁻¹

WOOL_{yield,T} = average wool production per producing animal in system *T*, kg·head⁻¹·year⁻¹

c = cohort of reproductive (AF, AM) or surplus (MF, MM) animals

 $N_{,T,C}$ = number of animals in system T and cohort c, heads

For goats, it is assumed that only a fraction of the animals produce cashmere or mohair. This fraction was obtained at national level from FAOSTAT. Cashmere and mohair production occurs in a few select countries. The total production of cashmere and mohair is calculated as follows:

Equation 9.5 - cashmere and mohair

a. CSHTOT,_T = CSH_{yield,T} * \sum_{c} (N_{T,c}) * CSH_{ratio} b. MHRTOT,_T = MHR_{yield,T} * \sum_{c} (N_{T,c}) * MHR_{ratio}

Where:

CSHTOT,_T = total amount of cashmere produced by system *T*, kg·year⁻¹ MHRTOT,_T = total amount of mohair produced by system *T*, kg·year⁻¹

CSH_{yield,T} = average cashmere production per producing animal in system *T*, kg·head⁻¹·year⁻¹

MHR_{yield,T} = average mohair production per producing animal in system *T*, kg·head⁻¹·year⁻¹

 $N_{,T,C}$ = number of animals in system T and cohort c, heads

CSH_{ratio} = ratio of goats producing cashmere, fraction MHR_{ratio} = ratio of goats producing mohair, fraction

c = cohort of reproductive (AF, AM) or surplus (MF, MM) animals

9.2 - AGGREGATION OF TOTAL EMISSIONS

The total emissions from different stages of the supply chain, calculated with the methods described in the previous chapters are aggregated to estimate the total amount of emissions for each species and production system. These total emissions are then allocated to the different co-products from each supply chain, following the allocation methods described in Section 9.3. Post-farm gate emissions are allocated directly to the respective product in the allocation phase.

Emissions from the three greenhouse gases are summed up. Methane and nitrous oxide emissions are converted into carbon dioxide equivalent (CO_2 -eq) using the 100-years Global Warming Potential (GWP_{100}) values from the AR5 IPCC report (2014): 34 for methane and 298 for nitrous oxide. The GWP_{100} is the measure of the ability of a certain gas to trap heat in the atmosphere compared to that of a similar mass of carbon dioxide, over a period of 100 years. Equation 9.6 is used to aggregate the total emissions arising from the whole supply chain of each species and production system.

Equation 9.6

GHGTOT,T = $CO_{2\text{-Feed},T} + CO_{2\text{-Feed-LUC},T} + (N_2O_{-\text{Feed-man},T} + N_2O_{-\text{Feed-fr&cr},T} + N_2O_{-\text{Manure},T}) * GWP_{100} - N_2O + (CH_{4\text{-Feed},T} + CH_{4\text{-Manure},T}) * GWP_{100} - CH_{4} + GHG_{nrge,T}$

Where:

GHGTOT, = total emission from species and system T (excluding post-farm emissions), kg CO₂-eq·year⁻¹

CO_{2-Feed,T} = total carbon dioxide emissions from energy use associated with feed consumption of species and system

T, kg CO₂·year⁻¹

CO_{2-Feed-LUC,T} = total carbon dioxide emissions from land-use change associated with feed consumption of species and

system T, kg CO₂·year⁻¹

N₂O_{-Feed-man,T} = total nitrous oxide emissions from manure application or deposition associated with feed consumption

of species and system T, kg N₂O·year⁻¹

 $N_2O_{\text{-Feed-fr\&cr,T}} \hspace{0.5cm} = \hspace{0.5cm} \text{total nitrous oxide emissions from nitrogen fertilizer and crop residues associated with feed} \\$

consumption of species and system T, kg N₂O·year⁻¹

N₂O_{-Manure,T} = total nitrous oxide emissions from manure management for species and system *T*, kg N₂O_{-year}-1

CH_{4-Feed,T} = total methane emissions from feed consumption of species and system *T*, kg CH₄·year⁻¹. Monogastric

species only.

CH_{4-Enteric,T} = total methane emissions from enteric fermentation for species and system *T*, kg CH₄·year⁻¹ = total methane emissions from manure management for species and system *T*, kg CH₄·year⁻¹

GHG_{nrgd,T} = total emissions from on-farm direct use of energy for species and system T, kg CO₂-eq·year⁻¹

GHG_{nrge,T} = total emissions from use of energy embedded in manufacture and maintenance of farm capital goods

for species and system T, kg CO₂-eq·year⁻¹

GWP₁₀₀-N₂O = global warming potential of nitrous oxide for 100 years' horizon, kg CO₂-eq⋅kg N₂O. Value of 298 was

used.

GWP₁₀₀-CH₄ = global warming potential of methane 100 years' horizon, kg CO₂-eq·kg CH₄. Value of 34 was used.

Total post-farm emissions are calculated separately using the emission factors from Section 8.3, following Equation 9.7:

Equation 9.7

a. $GHG_{-PFmeat,T}$ = $EFPF_{meat,T}$ * (MEATTOT_{prot,T} / (BFM_T * MEAT_{prot,T}))

b. GHG_{-PFmilk,T} = EFPF_{milk,T} * (MILKTOT_{prot,T} / MILK_{prot,T}) b. GHG_{-PFeggs,T} = EFPF_{eggs,T} * (EGGTOT_{prot,T} / EGG_{prot})

Where:

GHG-PFmeat,T = total post-farm emissions for meat of species and system *T*, kg CO₂-eq·year⁻¹
GHG-PFmilk,T = total post-farm emissions for milk of species and system *T*, kg CO₂-eq·year⁻¹
GHG-PFeggs,T = total post-farm emissions for eggs of species and system *T*, kg CO₂-eq·year⁻¹

EFPF_{meat,T} = post-farm emission factor for meat of species and system T, kg CO₂-eq·kg CW⁻¹. Emissions for backyard

systems of monogastrics are assumed to be null.

EFPF_{milk,T} = post-farm emission factor for milk of species and system T, kg CO₂-eq·kg milk⁻¹

EFPF_{eggs,T} = post-farm emission factor for eggs of species and system T, kg CO₂-eq·kg egg⁻¹. Emissions for backyard

chickens are assumed to be null.

 $MEATTOT_{prot,T}$ = total amount of meat protein produced by species and production system T, kg protein

BFM_T = bone-free-meat to carcass weight ratio for species and production system *T*, fraction. Values are shown

in Table 9.1.

 $MEAT_{prot,T}$ = average fraction of protein in meat of species and production system T, fraction. Values are shown in

Table 9.1.

 $MILKTOT_{prot,T}$ = total amount of milk protein produced by species and production system T, kg protein-year⁻¹

MILK_{prot,T} = average milk protein content of species and production system *T*, fraction

EGGTOT_{prot,T} = total amount of egg protein produced by production system *T*, kg protein·year⁻¹
EGGprot = average protein fraction in eggs, fraction. Default value of 0.1240 was used.

9.3 – ALLOCATION OF EMISSIONS AND EMISSION INTENSITIES

9.3.1 – Allocation in ruminant species

Emissions in ruminant herds are allocated between edible commodities, i.e. meat and milk, and non-edible ones, namely manure used as fuel and draught power from large ruminants (cattle and Buffaloes) and fiber for small ruminants. Emissions related to non-edible commodities are calculated first and deducted from the total emissions, before these are attributed to meat and milk.

As a first step, CH₄ and N₂O emissions from manure burned for fuel are calculated applying Equations 4.2, 4.10, 4.11 and 4.12 to the manure management system "burned for fuel" only. Therefore, these emissions are deducted from the rest of the manure emissions and allocated to fuel. The remaining emissions from manure are allocated to the other commodities.

To allocate emissions to draught power services, total emissions from draught animals alone are calculated. Then, a fraction of these emissions is allocated to draught power using as allocation factor the ratio of the net energy required for labor to the total net energy required by these animals. The remaining part of the emissions from draught animals is then allocated entirely to meat.

The allocation of emissions to fibre is based on the market value, taken from FAOSTAT, of all of the outputs (meat, milk and fibre). The total economic value of each of these co-products was calculated, multiplying the FAOSTAT prices by the respective total production. Finally, fractions of the economic value of each co-product within the total economic value produced by the system is used as allocation factor to partition emissions between fibre and edible products.

The remaining emissions are allocated between milk and meat using the proportions of proteins production from the two products as allocation factor. Once those emissions are allocated, the respective post-farm emissions are added to the final amount of each commodity. Tables 9.3 and 9.4 show an example calculation of emission allocation for large and small ruminant herds, respectively.

A specific allocation is also required for feedlot systems of cattle. Emissions from surplus animals in feedlots are, in fact, allocated entirely to meat. However, on a yearly base, animals spend in feedlots only a certain amount of days, during what is called the "finishing" phase, while they spend the rest of the year (the "rearing" phase) outside of feedlots, in the respective native system (either grassland based or mixed, from both dairy and beef specialized herds). Therefore, the specific emission profile associated with feedlot production must be allocated only to the finishing phase, while the emission intensity per head of feedlot animals during the rearing phase is assumed to be equal to that of the surplus animals in the respective system of origin. Specifically, the total emissions from the rearing phase are calculated, at national level, multiplying the average daily emissions per head of surplus animal, in non-feedlot systems, by the number of days of the rearing phase and the number of animals going to feedlots in one year. Similarly, the total emissions from the finishing phase are calculated multiplying the daily emissions from feedlot animals by the number of days that they spend in feedlots. Finally, the emissions from the two phases are summed together to calculate the total emissions from feedlot animals. Table 9.5 shows an example calculation of allocation of emissions from rearing and finishing phases to feedlot systems. The same approach can be used to allocate both the total emissions and those from specific emission sources.

TABLE 9.3. Example of allocation between products from cattle dairy production

	Animals involved in both meat and milk production (milking cows, reproductive males and replacement animals)	Draught males	Surplus animals
Total emissions – post- farm excluded (kg CO ₂ -eq)	1,800,000	120,000	255,000
Total emissions from manure burned as fuel (kg CO ₂ -eq)	100,000	10,000	15,000
Ratio of net energy for labor to the total net energy requirement	-	0.6	-
Total emissions allocated to draught power (kg CO ₂ - eq)	-	= (120,000 – 10,000) * 0.6 = 66,000	-
Total emission allocated to meat and milk (kg CO ₂ -eq)	= 1,800,000 – 100,000 = 1,700,000	= 120,000 - 10,000 - 66,000 = 44,000	= 215,000 – 15,000 = 200,000
Total protein (kg)	Milk: 18,000 Meat: 1,500	Meat: 500	Meat: 2,000
Fraction of milk protein	0.92	-	-
Fraction of meat protein	0.08	1	1
Post-farm emissions (kg CO ₂ -eq)	Milk: 54,000 Meat: 24,000		
Emission intensity of milk (kg CO ₂ -eq·kg protein ⁻¹)	= ((1,700,000 * 0.92) + 54,000) / 18,000 = 89.9		
Emission intensity of meat (kg CO ₂ -eq·kg protein ⁻¹)	= ((1,700,000 * 0.08) + 44,000 + 200,000 + 24,000) / (1,500 + 500 + 2,000) = 101.0		

TABLE 9.4. Example of allocation between products from sheep dairy production

	Animals involved in meat, milk and fibre Animals involved in meat and fibre Animals involved in meat and fibre		
	production	production only	
Total emissions – post-farm			
excluded	80,000	20,000	
(kg CO ₂ -eq)			
Total protein (kg)	Milk: 500	Meat: 200	
	Meat: 50	Weat. 200	
Total economic value (\$)	Milk: 4,000		
	Meat:	•	
	Wool: 700		
Fraction of milk protein	0.90	-	
Fraction of meat protein	0.10	1	
Total emission allocated to wool	= 80,000 * (700 / (4,000 + 9,000 + 700))	= 20,000 * (700 / (4,000 + 9,000 + 700))	
(kg CO₂-eq)	= 4,088	= 1,022	
Total emission allocated to meat	= 80,000 - 4,088	= 20,000 - 1,022	
and milk	= 75,912	= 18,978	
(kg CO₂-eq)	,	,	
Post-farm emissions	Milk: 1,500		
(kg CO₂-eq)	Meat: 1,250		
Emission intensity of milk	= ((75,912 * 0.9) + 1,500) / 500		
(kg CO₂-eq·kg protein ⁻¹)	= 139.6		
Emission intensity of meat	= ((75,912 * 0.1) + 18,978 + 1,250) / (50 + 200)		
(kg CO₂-eq·kg protein ⁻¹)	= 111.3		

TABLE 9.5. Example of allocation of emissions from rearing and finishing phases to feedlot systems

	Grassland based system	Mixed farming system	Feedlot system
Daily emissions per surplus			
animal	2.7	2.5	1.6
(kg CO ₂ -eq·head ⁻¹ ·day ⁻¹)			
Number of surplus animals	50	100	200
(heads)	30	100	200
Length of the finishing	_		120
phase (days)	_		120
Length of the rearing	= 365 – 120		_
phase (days)	= 245		_
Total emissions from the	= (2.7 * 50 + 2.5 * 100) / (50 + 100) * 245 * 200 = 125,767		
rearing phase			-
(kg CO ₂ -eq)			
Total emissions from the			= 1.6 * 120 * 200
finishing phase	-	-	= 38,400
(kg CO ₂ -eq)			- 38,400
Total emissions allocated			= 125,767 + 38,400
to feedlots	-	-	= 164,167
(kg CO ₂ -eq)			- 104,107

9.3.2 - Allocation in monogastric species

Emissions for monogastrics are also allocated between edible products, i.e. meat and eggs, in the case of backyard and layers chickens. For pigs and broilers, all emissions are allocated to meat.

For backyard chickens and layers, the first step is to calculate the specific emissions that are from all animals required for egg production, namely laying hens, reproductive males and replacement animals. In a subsequent step, these emissions are allocated on the basis of the amount of egg and meat protein output, while emissions from the remaining part of the flock are allocated entirely to meat. The respective post-farm emissions are added to the final amount of each commodity. Table 9.6 presents a calculation example.

TABLE 9.6. Example of allocation between edible products for chicken

	Animals involved in egg and meat production	Animals involved only in meat production
Total emissions (kg CO ₂ -eq)	50,000	39,000
Total protein (kg)	Eggs: 800 Meat: 200	Meat: 500
Total emission allocated to eggs	= 50,000 * (800 / (800 + 200))	-
(kg CO ₂ -eq) Total emission allocated to meat (kg CO ₂ -eq)	= 40,000 = 50,000 * (200 / (800 + 200)) = 10,000	39,000
Post-farm emissions (kg CO ₂ -eq)	Eggs: 1,200 Meat: 840	
Emission intensity of eggs (kg CO ₂ -eq·kg protein ⁻¹)	= (40,000 + 1,200) / 800 = 51.5	
Emission intensity of meat (kg CO ₂ -eq·kg protein ⁻¹)	= (10,000 + 39,000 + 840) / (200 + 500) = 71.2	

REFERENCES

Agribenchmark, 2013. *Feedlot analysis*. CANFAX. Available at: http://www.canfax.ca/Samples/Feedlot%20COP%20Analysis.pdf

BSI. 2008. PAS 2050:2008. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. UK: British Standards Institution (BSI).

EUROSTAT. 2010. Number of farms and heads of animals by LSU. Available at http://ec.europa.eu/eurostat.

FAO. 2013a. *Greenhouse gas emissions from ruminant supply chains – A global life cycle assessment,* by C. Opio, P. Gerber, A. Mottet, A. Falcucci, G. Tempio, M. MacLeod, T. Vellinga, B. Henderson & H. Steinfeld. Food and Agriculture Organization, Rome.

FAO. 2013b. *Greenhouse gas emissions from pig and chicken supply chains – A global life cycle assessment,* by M. MacLeod, P. Gerber, A. Mottet, A. Falcucci, G. Tempio, C. Opio, T. Vellinga, B. Henderson & H. Steinfeld. Food and Agriculture Organization, Rome.

FAO. 2016. Global Agro-Ecological Zones (GAEZ), Version 3. Available at http://gaez.fao.org/)

FAOSTAT. 2011. FAO Statistical Database.

FEEDEPEDIA. Animal feed resources information system. Available at: http://www.feedipedia.org/

Gilbert M., Conchedda G., Van Boeckel T.P., Cinardi G., Linard C., Nicolas G., Thanapongtharm W., D'Aietti L., Wint W., Newman S.H. and Robinson T.P. 2015, Income Disparities and the Global Distribution of Intensively Farmed Chicken and Pigs, PLoS ONE 10(7).

Haberl, H., Erb, K.-H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., Gingrich, S., Lucht W. & Fischer-Kowalski M. 2007. *Quantifying and mapping the global human appropriation of net primary production in Earth's terrestrial ecosystem.* PNAS. 104: 12942-12947

IEA. 2013. CO2 emissions from fuel combustion. Highlights 2013 Edition. IEA Statistics, Paris: IEA.

IPCC. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use. Intergovernmental Panel on Climate Change.

IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Intergovernmental Panel on Climate Change.

ISO. 2006a. Environmental management—life cycle assessment: principles and framework. ISO14040, Geneva.

ISO. 2006b. Environmental management—life cycle assessment: requirements and guidelines. ISO14044, Geneva.

Latham, J., Cumani, R., Rosati, I. & Bloise, M. 2014. Global land cover SHARE database. FAO

LEAP. 2015. *Global database of GHG emissions related to feed crops*. Available at http://www.fao.org/partnerships/leap/database/ghg-crops/en/.

MLA. 2011. Australian livestock export industry statistical review 2011.

NRC. 1998. Nutrient requirements of swine: 10th Revised Edition. Washington: National Academy Press.

Robinson T.P., Wint G.R.W., Conchedda G., Van Boeckel T.P., Ercoli V., Palamara E. 2014. *Mapping the Global Distribution of Livestock*. PLoS ONE 9(5): e96084. doi:10.1371/journal.pone.0096084

Sakomura, N.K. 2004. *Modelling Energy Utilization in Broiler Breeders, Laying Hens and Broilers*, Brazilian Journal of Poultry Science/Revista Brasileira de Ciência Avícola, Jan–Mar 2004 6(1): 1–11.

Scholtz, M.M, Bester, J., Mamabolo, J.M., & Ramsay, K.A. 2008. *Results of the national cattle survey undertaken in South Africa, with emphasis on beef.* Applied animal husbandry & rural development, Vol. 1, 1-9.

Seré, C. & Steinfeld, H. 1996. World livestock production systems: current status, issues and trends. FAO Animal Production and Health Paper 127. Rome, FAO.

SIK. 2010. *Modelling Energy Utilization in Broiler Breeders, Laying Hens and Broilers*, Brazilian Journal of Poultry Science/Revista Brasileira de Ciência Avícola, Jan–Mar 2004 6(1): 1–11.

USDA. 2012. USDA Census of Agriculture (2012). Available at https://www.agcensus.usda.gov/Publications/2012/.

<u>APPENDIX A – COUNTRY LIST</u>

The country grouping used in GLEAM is based on the 2010 FAO Global Administrative Unit Layers (GAUL). Country classification is done on a purely geographic basis.

TABLE A1 – Country list and classification

TABLE A1 – Country list and classification		
Region and country		
LATIN AMERICA AND THE CARIBBEAN (LAC)		
Antigua and Barbuda	Guyana	
Argentina	Haiti	
Bahamas	Honduras	
Barbados	Jamaica	
Belize	Mexico	
Bolivia	Nicaragua	
Brazil	Panama	
Chile	Paraguay	
Colombia	Peru	
Costa Rica	Puerto Rico	
Cuba	Saint Kitts and Nevis	
Dominica	Saint Lucia	
Dominican Republic	Saint Vincent and the Grenadines	
Ecuador	Suriname Trividad and Tahana	
El Salvador	Trinidad and Tobago	
Grenada	Uruguay	
Guatemala	Venezuela	
SUB-SAHARAN AFRICA (SSA)		
Angola	Liberia	
Benin	Madagascar	
Botswana	Malawi	
Burkina Faso	Mali	
Burundi	Mauritania	
Cameroon	Mauritius	
Cape Verde	Mozambique	
Central African Republic	Namibia	
Chad	Niger	
Comoros	Nigeria	
Congo	Rwanda	
Côte d'Ivoire	São Tome and Principe	
Democratic Republic of the Congo	Senegal	
Djibouti	Seychelles	
Equatorial Guinea	Sierra Leone	
Eritrea	Somalia	
Ethiopia	South Africa	
·		
Gabon	Swaziland	
Gambia	Togo	
Ghana	Uganda	
Guinea-Bissau	United Republic of Tanzania	
Guinea	Zambia	
Kenya	Zimbabwe	
Lesotho		
NEAR EAST AND NORTH AFRICA (NENA)		
Algeria	Morocco	
Armenia	Oman	
Azerbaijan	Qatar	
Bahrain	Saudi Arabia	
Cyprus	South Sudan	
Egypt	Sudan	
Gaza Strip	Syrian Arab Republic	
Georgia	Tajikistan	
Iraq	Tunisia	
Israel	Turkey	
Jordan	Turkmenistan	
Kazakhstan	United Arab Emirates	
Kuwait	Uzbekistan	
Nuwall	UZUENISLAII	

Kyrgyzstan	West Bank
Lebanon	Western Sahara
Libya	Yemen
SOUTH ASIA (SA)	remen
Afghanistan	Maldives
Bangladesh	Nepal
Bhutan	Pakistan
India	Sri Lanka
Iran, Islamic Republic of	
EASTERN EUROPE (EE)	
Belarus	Poland
Bulgaria	Romania
Czech Republic	Slovakia
Hungary	Ukraine
Moldova, Republic of	
RUSSIAN FEDERATION (RUS)	
Russian Federation	
EAST ASIA AND SOUTH-EAST ASIA (ESEA)	
Brunei Darussalam	Mongolia
Cambodia	Myanmar
China	Philippines
Democratic People's Republic of Korea	Republic of Korea
Hong Kong	Singapore
Indonesia	Thailand
Japan	Timor-Leste
Lao People's Democratic Republic	Viet Nam
Malaysia	
OCEANIA (OCE)	
Australia	Palau
Fiji	Papua New Guinea
Kiribati	Samoa
Marshall Islands	Solomon Islands
Micronesia, Federated States of	Tonga
Nauru	Tuvalu
New Zealand	Vanuatu
Northern Mariana Islands	Variation
WESTERN EUROPE (WE)	
Albania	Lithuania
Andorra	Luxemburg
Austria	Madeira Islands
Belgium	Malta
Bosnia and Herzegovina	Monaco
Croatia	Montenegro
Denmark	Netherlands
Estonia	Norway
Finland	Portugal
France	Republic of Serbia
Germany	San Marino
Greece	Slovenia
Iceland	Spain
Ireland	Sweden
Italy	Switzerland
Latvia	The former Yugoslav Republic of Macedonia
Liechtenstein	United Kingdom of Great Britain and Northern Ireland
NORTH AMERICA (NA)	
Bermuda	Greenland
Canada	United States of America